## The fundamental crossed module of the complement of a knotted surface

HTML articles powered by AMS MathViewer

- by João Faria Martins PDF
- Trans. Amer. Math. Soc.
**361**(2009), 4593-4630 Request permission

## Abstract:

We prove that if $M$ is a CW-complex and $M^1$ is its 1-skeleton, then the crossed module $\Pi _2(M,M^1)$ depends only on the homotopy type of $M$ as a space, up to free products, in the category of crossed modules, with $\Pi _2(D^2,S^1)$. From this it follows that if $\mathcal {G}$ is a finite crossed module and $M$ is finite, then the number of crossed module morphisms $\Pi _2(M,M^1) \to \mathcal {G}$ can be re-scaled to a homotopy invariant $I_{\mathcal {G}}(M)$, depending only on the algebraic 2-type of $M$. We describe an algorithm for calculating $\pi _2(M,M^{(1)})$ as a crossed module over $\pi _1(M^{(1)})$, in the case when $M$ is the complement of a knotted surface $\Sigma$ in $S^4$ and $M^{(1)}$ is the handlebody of a handle decomposition of $M$ made from its $0$- and $1$-handles. Here, $\Sigma$ is presented by a knot with bands. This in particular gives us a geometric method for calculating the algebraic 2-type of the complement of a knotted surface from a hyperbolic splitting of it. We prove in addition that the invariant $I_{\mathcal {G}}$ yields a non-trivial invariant of knotted surfaces in $S^4$ with good properties with regard to explicit calculations.## References

- Hans Joachim Baues,
*Combinatorial homotopy and $4$-dimensional complexes*, De Gruyter Expositions in Mathematics, vol. 2, Walter de Gruyter & Co., Berlin, 1991. With a preface by Ronald Brown. MR**1096295**, DOI 10.1515/9783110854480 - Richard A. Brown,
*Generalized group presentation and formal deformations of CW complexes*, Trans. Amer. Math. Soc.**334**(1992), no. 2, 519–549. MR**1153010**, DOI 10.1090/S0002-9947-1992-1153010-3 - Kenneth S. Brown,
*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR**1324339** - Ronald Brown,
*On the second relative homotopy group of an adjunction space: an exposition of a theorem of J. H. C. Whitehead*, J. London Math. Soc. (2)**22**(1980), no. 1, 146–152. MR**579818**, DOI 10.1112/jlms/s2-22.1.146 - Ronald Brown,
*Groupoids and crossed objects in algebraic topology*, Homology Homotopy Appl.**1**(1999), 1–78. MR**1691707**, DOI 10.4310/hha.1999.v1.n1.a1 - Ronald Brown,
*Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems*, Galois theory, Hopf algebras, and semiabelian categories, Fields Inst. Commun., vol. 43, Amer. Math. Soc., Providence, RI, 2004, pp. 101–130. MR**2075583**, DOI 10.1090/fic/043 - Ronald Brown and Philip J. Higgins,
*On the connection between the second relative homotopy groups of some related spaces*, Proc. London Math. Soc. (3)**36**(1978), no. 2, 193–212. MR**478150**, DOI 10.1112/plms/s3-36.2.193 - Ronald Brown and Philip J. Higgins,
*The classifying space of a crossed complex*, Math. Proc. Cambridge Philos. Soc.**110**(1991), no. 1, 95–120. MR**1104605**, DOI 10.1017/S0305004100070158 - Ronald Brown and Philip J. Higgins,
*On the algebra of cubes*, J. Pure Appl. Algebra**21**(1981), no. 3, 233–260. MR**617135**, DOI 10.1016/0022-4049(81)90018-9 - Brown R., Higgins P.J., Sivera R.: Nonabelian algebraic topology (in preparation). Part I downloadable.
- R. Brown and J. Huebschmann,
*Identities among relations*, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 153–202. MR**662431** - Scott Carter, Seiichi Kamada, and Masahico Saito,
*Surfaces in 4-space*, Encyclopaedia of Mathematical Sciences, vol. 142, Springer-Verlag, Berlin, 2004. Low-Dimensional Topology, III. MR**2060067**, DOI 10.1007/978-3-662-10162-9 - J. Scott Carter, Joachim H. Rieger, and Masahico Saito,
*A combinatorial description of knotted surfaces and their isotopies*, Adv. Math.**127**(1997), no. 1, 1–51. MR**1445361**, DOI 10.1006/aima.1997.1618 - J. Scott Carter and Masahico Saito,
*Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR**1487374**, DOI 10.1090/surv/055 - Richard H. Crowell and Ralph H. Fox,
*Introduction to knot theory*, Graduate Texts in Mathematics, No. 57, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1963 original. MR**0445489**, DOI 10.1007/978-1-4612-9935-6 - Samuel Eilenberg and Saunders MacLane,
*Determination of the second homology and cohomology groups of a space by means of homotopy invariants*, Proc. Nat. Acad. Sci. U.S.A.**32**(1946), 277–280. MR**19307**, DOI 10.1073/pnas.32.11.277 - João Faria Martins,
*Categorical groups, knots and knotted surfaces*, J. Knot Theory Ramifications**16**(2007), no. 9, 1181–1217. MR**2375821**, DOI 10.1142/S0218216507005713 - João Faria Martins,
*On the homotopy type and the fundamental crossed complex of the skeletal filtration of a CW-complex*, Homology Homotopy Appl.**9**(2007), no. 1, 295–329. MR**2299802**, DOI 10.4310/HHA.2007.v9.n1.a13 - Louis H. Kauffman and João Faria Martins,
*Invariants of welded virtual knots via crossed module invariants of knotted surfaces*, Compos. Math.**144**(2008), no. 4, 1046–1080. MR**2441256**, DOI 10.1112/S0010437X07003429 - João Faria Martins and Timothy Porter,
*On Yetter’s invariant and an extension of the Dijkgraaf-Witten invariant to categorical groups*, Theory Appl. Categ.**18**(2007), No. 4, 118–150. MR**2299797** - R. H. Fox,
*A quick trip through knot theory*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR**0140099** - C. McA. Gordon,
*Homology of groups of surfaces in the $4$-sphere*, Math. Proc. Cambridge Philos. Soc.**89**(1981), no. 1, 113–117. MR**591977**, DOI 10.1017/S0305004100057996 - Robert E. Gompf and András I. Stipsicz,
*$4$-manifolds and Kirby calculus*, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR**1707327**, DOI 10.1090/gsm/020 - Mauricio A. Gutiérrez and Philip S. Hirschhorn,
*Free simplicial groups and the second relative homotopy group of an adjunction space*, J. Pure Appl. Algebra**39**(1986), no. 1-2, 119–123. MR**816893**, DOI 10.1016/0022-4049(86)90139-8 - Allen Hatcher,
*Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR**1867354** - Johannes Huebschmann,
*Crossed $n$-fold extensions of groups and cohomology*, Comment. Math. Helv.**55**(1980), no. 2, 302–313. MR**576608**, DOI 10.1007/BF02566688 - Sushil Jajodia,
*On $2$-dimensional CW-complexes with a single $2$-cell*, Pacific J. Math.**80**(1979), no. 1, 191–203. MR**534708**, DOI 10.2140/pjm.1979.80.191 - Akio Kawauchi, Tetsuo Shibuya, and Shin’ichi Suzuki,
*Descriptions on surfaces in four-space. I. Normal forms*, Math. Sem. Notes Kobe Univ.**10**(1982), no. 1, 75–125. MR**672939** - Robion C. Kirby,
*The topology of $4$-manifolds*, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989. MR**1001966**, DOI 10.1007/BFb0089031 - Jean-Louis Loday,
*Spaces with finitely many nontrivial homotopy groups*, J. Pure Appl. Algebra**24**(1982), no. 2, 179–202. MR**651845**, DOI 10.1016/0022-4049(82)90014-7 - S. J. Lomonaco Jr.,
*The homotopy groups of knots. I. How to compute the algebraic $2$-type*, Pacific J. Math.**95**(1981), no. 2, 349–390. MR**632192**, DOI 10.2140/pjm.1981.95.349 - Saunders MacLane,
*Cohomology theory in abstract groups. III. Operator homomorphisms of kernels*, Ann. of Math. (2)**50**(1949), 736–761. MR**33287**, DOI 10.2307/1969561 - Saunders MacLane and J. H. C. Whitehead,
*On the $3$-type of a complex*, Proc. Nat. Acad. Sci. U.S.A.**36**(1950), 41–48. MR**33519**, DOI 10.1073/pnas.36.1.41 - S. V. Matveev,
*The structure of the second homotopy group of the join of two spaces*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**143**(1985), 147–155, 178–179 (Russian). Studies in topology, V. MR**806565** - J. P. May,
*A concise course in algebraic topology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR**1702278** - Barry Mazur,
*Differential topology from the point of view of simple homotopy theory*, Inst. Hautes Études Sci. Publ. Math.**15**(1963), 93. MR**161342** - C. D. Papakyriakopoulos,
*On Dehn’s lemma and the asphericity of knots*, Ann. of Math. (2)**66**(1957), 1–26. MR**90053**, DOI 10.2307/1970113 - Steven P. Plotnick and Alexander I. Suciu,
*$k$-invariants of knotted $2$-spheres*, Comment. Math. Helv.**60**(1985), no. 1, 54–84. MR**787662**, DOI 10.1007/BF02567400 - Tim Porter,
*Interpretations of Yetter’s notion of $G$-coloring: simplicial fibre bundles and non-abelian cohomology*, J. Knot Theory Ramifications**5**(1996), no. 5, 687–720. MR**1414095**, DOI 10.1142/S0218216596000400 - Tim Porter,
*Topological quantum field theories from homotopy $n$-types*, J. London Math. Soc. (2)**58**(1998), no. 3, 723–732. MR**1678163**, DOI 10.1112/S0024610798006838 - Dale Rolfsen,
*Knots and links*, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR**0515288** - Colin Patrick Rourke and Brian Joseph Sanderson,
*Introduction to piecewise-linear topology*, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR**665919** - Frank J. Swenton,
*On a calculus for 2-knots and surfaces in 4-space*, J. Knot Theory Ramifications**10**(2001), no. 8, 1133–1141. MR**1871221**, DOI 10.1142/S0218216501001359 - George W. Whitehead,
*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508**, DOI 10.1007/978-1-4612-6318-0 - J. H. C. Whitehead,
*On adding relations to homotopy groups*, Ann. of Math. (2)**42**(1941), 409–428. MR**4123**, DOI 10.2307/1968907 - J. H. C. Whitehead,
*Note on a previous paper entitled “On adding relations to homotopy groups.”*, Ann. of Math. (2)**47**(1946), 806–810. MR**17537**, DOI 10.2307/1969237 - J. H. C. Whitehead,
*Combinatorial homotopy. II*, Bull. Amer. Math. Soc.**55**(1949), 453–496. MR**30760**, DOI 10.1090/S0002-9904-1949-09213-3 - David N. Yetter,
*TQFTs from homotopy $2$-types*, J. Knot Theory Ramifications**2**(1993), no. 1, 113–123. MR**1209321**, DOI 10.1142/S0218216593000076 - Katsuyuki Yoshikawa,
*An enumeration of surfaces in four-space*, Osaka J. Math.**31**(1994), no. 3, 497–522. MR**1309400**

## Additional Information

**João Faria Martins**- Affiliation: Departamentos de Matemática, Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- Email: jnmartins@fc.up.pt
- Received by editor(s): June 18, 2007
- Published electronically: April 3, 2009
- Additional Notes: This work had the financial support of FCT (Portugal), post-doctoral grant number SFRH/BPD/17552/2004, part of the research project POCI/MAT/60352/2004 (“Quantum Topology”), also financed by FCT
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**361**(2009), 4593-4630 - MSC (2000): Primary 57M05, 57Q45; Secondary 55Q20
- DOI: https://doi.org/10.1090/S0002-9947-09-04576-0
- MathSciNet review: 2506421