Hausdorff measures and functions of bounded quadratic variation
HTML articles powered by AMS MathViewer
- by D. Apatsidis, S. A. Argyros and V. Kanellopoulos
- Trans. Amer. Math. Soc. 363 (2011), 4225-4262
- DOI: https://doi.org/10.1090/S0002-9947-2011-05209-8
- Published electronically: March 15, 2011
- PDF | Request permission
Abstract:
To each function $f$ of bounded quadratic variation we associate a Hausdorff measure $\mu _f$. We show that the map $f\to \mu _f$ is locally Lipschitz and onto the positive cone of $\mathcal {M}[0,1]$. We use the measures $\{\mu _f:f\in V_2\}$ to determine the structure of the subspaces of $V_2^0$ which either contain $c_0$ or the square stopping time space $S^2$.References
- D. Apatsidis, S. A. Argyros, and V. Kanellopoulos, On the subspaces of $JF$ and $JT$ with non-separable dual, J. Funct. Anal. 254 (2008), no. 3, 632–674. MR 2381158, DOI 10.1016/j.jfa.2007.11.011
- Spiros A. Argyros and Vassilis Kanellopoulos, Optimal sequences of continuous functions converging to a Baire-1 function, Math. Ann. 324 (2002), no. 4, 689–729. MR 1942246, DOI 10.1007/s00208-002-0354-0
- S. A. Argyros, A. Manoussakis, and M. Petrakis, Function spaces not containing $l_1$, Israel J. Math. 135 (2003), 29–81. MR 1996395, DOI 10.1007/BF02776049
- Gérard Bourdaud, Massimo Lanza de Cristoforis, and Winfried Sickel, Superposition operators and functions of bounded $p$-variation. II, Nonlinear Anal. 62 (2005), no. 3, 483–517. MR 2147980, DOI 10.1016/j.na.2005.03.062
- Gérard Bourdaud, Massimo Lanza de Cristoforis, and Winfried Sickel, Superposition operators and functions of bounded $p$-variation, Rev. Mat. Iberoam. 22 (2006), no. 2, 455–487. MR 2294787, DOI 10.4171/RMI/463
- S. Buechler, James Function spaces, Ph.D. Thesis, University of Texas at Austin, 1994.
- N. Dew, Asymptotic structure in Banach spaces, Ph.D. Thesis, Oxford University, eprints.maths.ox.ac.uk/49/01/dew.pdf
- Richard M. Dudley and Rimas Norvaiša, Differentiability of six operators on nonsmooth functions and $p$-variation, Lecture Notes in Mathematics, vol. 1703, Springer-Verlag, Berlin, 1999. With the collaboration of Jinghua Qian. MR 1705318, DOI 10.1007/BFb0100744
- B. I. Golubov, Continuous functions of bounded $p$-variation, Mat. Zametki 1 (1967), 305–312 (Russian). MR 211181
- R. Haydon, E. Odell, and H. Rosenthal, On certain classes of Baire-$1$ functions with applications to Banach space theory, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 1–35. MR 1126734, DOI 10.1007/BFb0090209
- Robert C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743. MR 417763, DOI 10.1090/S0002-9904-1974-13580-9
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- A. S. Kechris and A. Louveau, A classification of Baire class $1$ functions, Trans. Amer. Math. Soc. 318 (1990), no. 1, 209–236. MR 946424, DOI 10.1090/S0002-9947-1990-0946424-3
- S. V. Kisliakov, A remark on the space of functions of bounded $p$-variation, Math. Nachr. 119 (1984), 137–140. MR 774183, DOI 10.1002/mana.19841190112
- J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain $\ell _{1}$ and whose duals are non-separable, Studia Math. 54 (1975), no. 1, 81–105. MR 390720, DOI 10.4064/sm-54-1-81-105
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- E. R. Love, A generalization of absolute continuity, J. London Math. Soc. 26 (1951), 1–13. MR 39791, DOI 10.1112/jlms/s1-26.1.1
- E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing $l^{1}$, Israel J. Math. 20 (1975), no. 3-4, 375–384. MR 377482, DOI 10.1007/BF02760341
- Franciszek Prus-Wiśniowski, Continuity of $p$-variation in the Vietoris topology, J. Math. Anal. Appl. 340 (2008), no. 2, 1452–1468. MR 2390943, DOI 10.1016/j.jmaa.2007.09.051
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Haskell Rosenthal, A characterization of Banach spaces containing $c_0$, J. Amer. Math. Soc. 7 (1994), no. 3, 707–748. MR 1242455, DOI 10.1090/S0894-0347-1994-1242455-4
- N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. and Phys. 3, 72-94, 1924.
- L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), no. 1, 251–282. MR 1555421, DOI 10.1007/BF02401743
Bibliographic Information
- D. Apatsidis
- Affiliation: Department of Mathematics, Faculty of Applied Sciences, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
- Email: dapatsidis@hotmail.com
- S. A. Argyros
- Affiliation: Department of Mathematics, Faculty of Applied Sciences, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
- MR Author ID: 26995
- Email: sargyros@math.ntua.gr
- V. Kanellopoulos
- Affiliation: Department of Mathematics, Faculty of Applied Sciences, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
- Email: bkanel@math.ntua.gr
- Received by editor(s): March 31, 2009
- Received by editor(s) in revised form: July 14, 2009
- Published electronically: March 15, 2011
- Additional Notes: This research was supported by PEBE 2007.
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 4225-4262
- MSC (2000): Primary 28A78, 46B20, 46B26
- DOI: https://doi.org/10.1090/S0002-9947-2011-05209-8
- MathSciNet review: 2792986