## Non-simply connected minimal planar domains in $\mathbb {H}^2\times \mathbb {R}$

HTML articles powered by AMS MathViewer

- by Francisco Martín and M. Magdalena Rodríguez PDF
- Trans. Amer. Math. Soc.
**365**(2013), 6167-6183 Request permission

## Abstract:

We prove that any non-simply connected planar domain can be properly and minimally embedded in $\mathbb {H}^2\times \mathbb {R}$. The examples that we produce are vertical bi-graphs, and they are obtained from the conjugate surface of a Jenkins-Serrin graph.## References

- Lars V. Ahlfors and Leo Sario,
*Riemann surfaces*, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR**0114911** - Tobias H. Colding and William P. Minicozzi II,
*Minimal surfaces*, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999. MR**1683966** - Tobias H. Colding and William P. Minicozzi II,
*An excursion into geometric analysis*, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 83–146. MR**2195407**, DOI 10.4310/SDG.2004.v9.n1.a4 - Pascal Collin and Harold Rosenberg,
*Construction of harmonic diffeomorphisms and minimal graphs*, Ann. of Math. (2)**172**(2010), no. 3, 1879–1906. MR**2726102**, DOI 10.4007/annals.2010.172.1879 - Benoît Daniel,
*Isometric immersions into $\Bbb S^n\times \Bbb R$ and $\Bbb H^n\times \Bbb R$ and applications to minimal surfaces*, Trans. Amer. Math. Soc.**361**(2009), no. 12, 6255–6282. MR**2538594**, DOI 10.1090/S0002-9947-09-04555-3 - Leonor Ferrer, Francisco Martín, and William H. Meeks III,
*Existence of proper minimal surfaces of arbitrary topological type*, Adv. Math.**231**(2012), no. 1, 378–413. MR**2935393**, DOI 10.1016/j.aim.2012.05.007 - Laurent Hauswirth,
*Minimal surfaces of Riemann type in three-dimensional product manifolds*, Pacific J. Math.**224**(2006), no. 1, 91–117. MR**2231653**, DOI 10.2140/pjm.2006.224.91 - Laurent Hauswirth, Ricardo Sa Earp, and Eric Toubiana,
*Associate and conjugate minimal immersions in $M\times \mathbf R$*, Tohoku Math. J. (2)**60**(2008), no. 2, 267–286. MR**2428864** - Alfred Huber,
*On subharmonic functions and differential geometry in the large*, Comment. Math. Helv.**32**(1957), 13–72. MR**94452**, DOI 10.1007/BF02564570 - Howard Jenkins and James Serrin,
*The Dirichlet problem for the minimal surface equation, with infinite data*, Bull. Amer. Math. Soc.**72**(1966), 102–106. MR**185522**, DOI 10.1090/S0002-9904-1966-11438-6 - L. Mazet, M. M. Rodríguez, and H. Rosenberg,
*The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface*, Proc. Lond. Math. Soc. (3)**102**(2011), no. 6, 985–1023. MR**2806098**, DOI 10.1112/plms/pdq032 -
*W. H. Meeks III and J. Pérez*, Embedded minimal surfaces of finite topology. Preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm. - William H. Meeks III and Joaquín Pérez,
*Conformal properties in classical minimal surface theory*, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 275–335. MR**2195411**, DOI 10.4310/SDG.2004.v9.n1.a8 -
*W. H. Meeks III, J. Pérez, and A. Ros*, Properly embedded minimal planar domains, preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm. - Filippo Morabito and M. Magdalena Rodríguez,
*Saddle towers and minimal $k$-noids in $\Bbb H^2\times \Bbb R$*, J. Inst. Math. Jussieu**11**(2012), no. 2, 333–349. MR**2905307**, DOI 10.1017/S1474748011000107 - Barbara Nelli and Harold Rosenberg,
*Minimal surfaces in ${\Bbb H}^2\times \Bbb R$*, Bull. Braz. Math. Soc. (N.S.)**33**(2002), no. 2, 263–292. MR**1940353**, DOI 10.1007/s005740200013 - Juncheol Pyo,
*New complete embedded minimal surfaces in $\Bbb H^2\times \Bbb R$*, Ann. Global Anal. Geom.**40**(2011), no. 2, 167–176. MR**2811623**, DOI 10.1007/s10455-011-9251-7 -
*M.M. Rodríguez*, Minimal surfaces with limit ends in $\mathbb {H}^2\times \mathbb {R}$. To appear in J. Reine Angew. Math., arXiv:1009.3524.

## Additional Information

**Francisco Martín**- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, Fuentenueva, 18071, Granada, Spain
- Email: fmartin@ugr.es
**M. Magdalena Rodríguez**- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, Fuentenueva, 18071, Granada, Spain
- Email: magdarp@ugr.es
- Received by editor(s): July 26, 2011
- Published electronically: March 26, 2013
- Additional Notes: This research was partially supported by MEC-FEDER Grants no. MTM2007 - 61775 and MTM2011 - 22547 and a Regional J. Andalucía Grant no. P09-FQM-5088.
- © Copyright 2013 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**365**(2013), 6167-6183 - MSC (2010): Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9947-2013-05794-7
- MathSciNet review: 3105746