Non-simply connected minimal planar domains in $\mathbb {H}^2\times \mathbb {R}$
HTML articles powered by AMS MathViewer
- by Francisco Martín and M. Magdalena Rodríguez PDF
- Trans. Amer. Math. Soc. 365 (2013), 6167-6183 Request permission
Abstract:
We prove that any non-simply connected planar domain can be properly and minimally embedded in $\mathbb {H}^2\times \mathbb {R}$. The examples that we produce are vertical bi-graphs, and they are obtained from the conjugate surface of a Jenkins-Serrin graph.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
- Tobias H. Colding and William P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999. MR 1683966
- Tobias H. Colding and William P. Minicozzi II, An excursion into geometric analysis, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 83–146. MR 2195407, DOI 10.4310/SDG.2004.v9.n1.a4
- Pascal Collin and Harold Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs, Ann. of Math. (2) 172 (2010), no. 3, 1879–1906. MR 2726102, DOI 10.4007/annals.2010.172.1879
- Benoît Daniel, Isometric immersions into $\Bbb S^n\times \Bbb R$ and $\Bbb H^n\times \Bbb R$ and applications to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6255–6282. MR 2538594, DOI 10.1090/S0002-9947-09-04555-3
- Leonor Ferrer, Francisco Martín, and William H. Meeks III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math. 231 (2012), no. 1, 378–413. MR 2935393, DOI 10.1016/j.aim.2012.05.007
- Laurent Hauswirth, Minimal surfaces of Riemann type in three-dimensional product manifolds, Pacific J. Math. 224 (2006), no. 1, 91–117. MR 2231653, DOI 10.2140/pjm.2006.224.91
- Laurent Hauswirth, Ricardo Sa Earp, and Eric Toubiana, Associate and conjugate minimal immersions in $M\times \mathbf R$, Tohoku Math. J. (2) 60 (2008), no. 2, 267–286. MR 2428864
- Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72. MR 94452, DOI 10.1007/BF02564570
- Howard Jenkins and James Serrin, The Dirichlet problem for the minimal surface equation, with infinite data, Bull. Amer. Math. Soc. 72 (1966), 102–106. MR 185522, DOI 10.1090/S0002-9904-1966-11438-6
- L. Mazet, M. M. Rodríguez, and H. Rosenberg, The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface, Proc. Lond. Math. Soc. (3) 102 (2011), no. 6, 985–1023. MR 2806098, DOI 10.1112/plms/pdq032
- W. H. Meeks III and J. Pérez, Embedded minimal surfaces of finite topology. Preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm.
- William H. Meeks III and Joaquín Pérez, Conformal properties in classical minimal surface theory, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 275–335. MR 2195411, DOI 10.4310/SDG.2004.v9.n1.a8
- W. H. Meeks III, J. Pérez, and A. Ros, Properly embedded minimal planar domains, preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm.
- Filippo Morabito and M. Magdalena Rodríguez, Saddle towers and minimal $k$-noids in $\Bbb H^2\times \Bbb R$, J. Inst. Math. Jussieu 11 (2012), no. 2, 333–349. MR 2905307, DOI 10.1017/S1474748011000107
- Barbara Nelli and Harold Rosenberg, Minimal surfaces in ${\Bbb H}^2\times \Bbb R$, Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 263–292. MR 1940353, DOI 10.1007/s005740200013
- Juncheol Pyo, New complete embedded minimal surfaces in $\Bbb H^2\times \Bbb R$, Ann. Global Anal. Geom. 40 (2011), no. 2, 167–176. MR 2811623, DOI 10.1007/s10455-011-9251-7
- M.M. Rodríguez, Minimal surfaces with limit ends in $\mathbb {H}^2\times \mathbb {R}$. To appear in J. Reine Angew. Math., arXiv:1009.3524.
Additional Information
- Francisco Martín
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, Fuentenueva, 18071, Granada, Spain
- Email: fmartin@ugr.es
- M. Magdalena Rodríguez
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, Fuentenueva, 18071, Granada, Spain
- Email: magdarp@ugr.es
- Received by editor(s): July 26, 2011
- Published electronically: March 26, 2013
- Additional Notes: This research was partially supported by MEC-FEDER Grants no. MTM2007 - 61775 and MTM2011 - 22547 and a Regional J. Andalucía Grant no. P09-FQM-5088.
- © Copyright 2013 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 365 (2013), 6167-6183
- MSC (2010): Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9947-2013-05794-7
- MathSciNet review: 3105746