A class of $\textrm {II_1}$ factors with an exotic abelian maximal amenable subalgebra
HTML articles powered by AMS MathViewer
- by Cyril Houdayer PDF
- Trans. Amer. Math. Soc. 366 (2014), 3693-3707 Request permission
Abstract:
We show that for every mixing orthogonal representation $\pi : \mathbf {Z} \to \mathcal O(H_{\mathbf {R}})$, the abelian subalgebra $\mathrm {L}(\mathbf {Z})$ is maximal amenable in the crossed product $\mathrm {II}_1$ factor $\Gamma (H_{\mathbf {R}})'' \rtimes _\pi \mathbf {Z}$ associated with the free Bogoljubov action of the representation $\pi$. This provides uncountably many non-isomorphic $A$-$A$-bimodules which are disjoint from the coarse $A$-$A$-bimodule and of the form $\mathrm {L}^2(M \ominus A)$ where $A \subset M$ is a maximal amenable masa in a $\mathrm {II}_1$ factor.References
- A. Brothier, The cup subalgebra of a $II_1$ factor given by a subfactor planar algebra is maximal amenable. arXiv:1210.8091
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Jan Cameron, Junsheng Fang, Mohan Ravichandran, and Stuart White, The radial masa in a free group factor is maximal injective, J. Lond. Math. Soc. (2) 82 (2010), no. 3, 787–809. MR 2739068, DOI 10.1112/jlms/jdq052
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- Ken Dykema, Interpolated free group factors, Pacific J. Math. 163 (1994), no. 1, 123–135. MR 1256179
- Ken Dykema and Kunal Mukherjee, Measure-multiplicity of the Laplacian masa, Glasg. Math. J. 55 (2013), no. 2, 285–292. MR 3040862, DOI 10.1017/S001708951200050X
- Cyril Houdayer and Éric Ricard, Approximation properties and absence of Cartan subalgebra for free Araki-Woods factors, Adv. Math. 228 (2011), no. 2, 764–802. MR 2822210, DOI 10.1016/j.aim.2011.06.010
- Cyril Houdayer and Dimitri Shlyakhtenko, Strongly solid $\textrm {II}_1$ factors with an exotic MASA, Int. Math. Res. Not. IMRN 6 (2011), 1352–1380. MR 2806507, DOI 10.1093/imrn/rnq117
- Richard V. Kadison, Diagonalizing matrices, Amer. J. Math. 106 (1984), no. 6, 1451–1468. MR 765586, DOI 10.2307/2374400
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, 2nd ed., Hermann, Paris, 1994 (French, with French summary). With notes by Kahane, Thomas W. Körner, Russell Lyons and Stephen William Drury. MR 1303593
- Alexander S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160, American Mathematical Society, Providence, RI, 2010. MR 2583950, DOI 10.1090/surv/160
- Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR 953784, DOI 10.1017/CBO9780511758850
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Sergey Neshveyev and Erling Størmer, Ergodic theory and maximal abelian subalgebras of the hyperfinite factor, J. Funct. Anal. 195 (2002), no. 2, 239–261. MR 1940356, DOI 10.1006/jfan.2002.3967
- Narutaka Ozawa, Solid von Neumann algebras, Acta Math. 192 (2004), no. 1, 111–117. MR 2079600, DOI 10.1007/BF02441087
- Narutaka Ozawa and Sorin Popa, On a class of $\textrm {II}_1$ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), no. 1, 713–749. MR 2680430, DOI 10.4007/annals.2010.172.713
- Sorin Popa, Maximal injective subalgebras in factors associated with free groups, Adv. in Math. 50 (1983), no. 1, 27–48. MR 720738, DOI 10.1016/0001-8708(83)90033-6
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369–408. MR 2231961, DOI 10.1007/s00222-006-0501-4
- Florin Rădulescu, Singularity of the radial subalgebra of ${\scr L}(F_N)$ and the Pukánszky invariant, Pacific J. Math. 151 (1991), no. 2, 297–306. MR 1132391
- Florin Rădulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), no. 2, 347–389. MR 1258909, DOI 10.1007/BF01231764
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Dan Voiculescu, Symmetries of some reduced free product $C^\ast$-algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 556–588. MR 799593, DOI 10.1007/BFb0074909
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
- D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), no. 1, 172–199. MR 1371236, DOI 10.1007/BF02246772
Additional Information
- Cyril Houdayer
- Affiliation: Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon, CNRS-UMR 5669, 69364 Lyon Cedex 7, France
- Email: cyril.houdayer@ens-lyon.fr
- Received by editor(s): April 30, 2012
- Received by editor(s) in revised form: September 21, 2012
- Published electronically: March 20, 2014
- Additional Notes: The author’s research was partially supported by ANR grants AGORA NT09-461407 and NEUMANN
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 366 (2014), 3693-3707
- MSC (2010): Primary 46L10, 46L54, 46L55, 22D25
- DOI: https://doi.org/10.1090/S0002-9947-2014-05964-3
- MathSciNet review: 3192613