## Well-posedness of general boundary-value problems for scalar conservation laws

HTML articles powered by AMS MathViewer

- by Boris Andreianov and Karima Sbihi PDF
- Trans. Amer. Math. Soc.
**367**(2015), 3763-3806 Request permission

## Abstract:

In this paper we investigate well-posedness for the problem $u_t+ \operatorname {div} \varphi (u)=f$ on $(0,T)\!\times \!\Omega$, $\Omega \subset \mathbb {R}^N$, with initial condition $u(0,\cdot )=u_0$ on $\Omega$ and with general dissipative boundary conditions $\varphi (u)\cdot \nu \in \beta _{(t,x)}(u)$ on $(0,T)\!\times \!\partial \Omega$. Here for a.e. $(t,x)\in (0,T)\!\times \!\partial \Omega$, $\beta _{(t,x)}(\cdot )$ is a maximal monotone graph on $\mathbb {R}$. This includes, as particular cases, Dirichlet, Neumann, Robin, obstacle boundary conditions and their piecewise combinations.

As for the well-studied case of the Dirichlet condition, one has to interpret the *formal boundary condition* given by $\beta$ by replacing it with the adequate *effective boundary condition*. Such effective condition can be obtained through a study of the boundary layer appearing in approximation processes such as the vanishing viscosity approximation. We claim that the formal boundary condition given by $\beta$ should be interpreted as the effective boundary condition given by another monotone graph $\tilde \beta$, which is defined from $\beta$ by the projection procedure we describe. We give several equivalent definitions of entropy solutions associated with $\tilde \beta$ (and thus also with $\beta$).

For the notion of solution defined in this way, we prove existence, uniqueness and $L^1$ contraction, monotone and continuous dependence on the graph $\beta$. Convergence of approximation procedures and stability of the notion of entropy solution are illustrated by several results.

## References

- Hans Wilhelm Alt and Stephan Luckhaus,
*Quasilinear elliptic-parabolic differential equations*, Math. Z.**183**(1983), no. 3, 311–341. MR**706391**, DOI 10.1007/BF01176474 - Kaouther Ammar, Petra Wittbold, and Jose Carrillo,
*Scalar conservation laws with general boundary condition and continuous flux function*, J. Differential Equations**228**(2006), no. 1, 111–139. MR**2254186**, DOI 10.1016/j.jde.2006.05.002 - F. Andreu, N. Igbida, J. M. Mazón, and J. Toledo,
*$L^1$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**24**(2007), no. 1, 61–89 (English, with English and French summaries). MR**2286559**, DOI 10.1016/j.anihpc.2005.09.009 - F. Andreu, N. Igbida, J. M. Mazón, and J. Toledo,
*Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary conditions and $L^1$-data*, J. Differential Equations**244**(2008), no. 11, 2764–2803. MR**2418175**, DOI 10.1016/j.jde.2008.02.022 - B. Andreianov,
*One-dimensional conservation law with boundary conditions: General results and spatially inhomogeneous case*, Hyperbolic problems: Theory, numerics, applications (Proceedings of the HYP2012 conference, Padua), AIMS series in Appl. Math., Vol. 8, 2014, pp. 259–267. - Boris Andreianov and Mohamed Maliki,
*A note on uniqueness of entropy solutions to degenerate parabolic equations in $\Bbb R^N$*, NoDEA Nonlinear Differential Equations Appl.**17**(2010), no. 1, 109–118. MR**2596497**, DOI 10.1007/s00030-009-0042-9 - B. Andreianov and K. Sbihi,
*Strong boundary traces and well-posedness for scalar conservation laws with dissipative boundary conditions*, Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2008, pp. 937–945. MR**2549233**, DOI 10.1007/978-3-540-75712-2_{9}8 - Boris Andreianov and Karima Sbihi,
*Scalar conservation laws with nonlinear boundary conditions*, C. R. Math. Acad. Sci. Paris**345**(2007), no. 8, 431–434 (English, with English and French summaries). MR**2367360**, DOI 10.1016/j.crma.2007.09.008 - J. M. Ball and F. Murat,
*Remarks on Chacon’s biting lemma*, Proc. Amer. Math. Soc.**107**(1989), no. 3, 655–663. MR**984807**, DOI 10.1090/S0002-9939-1989-0984807-3 - C. Bardos, A. Y. le Roux, and J.-C. Nédélec,
*First order quasilinear equations with boundary conditions*, Comm. Partial Differential Equations**4**(1979), no. 9, 1017–1034. MR**542510**, DOI 10.1080/03605307908820117 - Philippe Bénilan, Jose Carrillo, and Petra Wittbold,
*Renormalized entropy solutions of scalar conservation laws*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**29**(2000), no. 2, 313–327. MR**1784177** - Philippe Bénilan and Stanislzav Kružkov,
*Conservation laws with continuous flux functions*, NoDEA Nonlinear Differential Equations Appl.**3**(1996), no. 4, 395–419. MR**1418588**, DOI 10.1007/BF01193828 - Raimund Bürger, Hermano Frid, and Kenneth H. Karlsen,
*On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition*, J. Math. Anal. Appl.**326**(2007), no. 1, 108–120. MR**2277770**, DOI 10.1016/j.jmaa.2006.02.072 - R. Bürger, A. García, K. H. Karlsen, and J. D. Towers,
*A family of numerical schemes for kinematic flows with discontinuous flux*, J. Engrg. Math.**60**(2008), no. 3-4, 387–425. MR**2396491**, DOI 10.1007/s10665-007-9148-4 - Raimund Bürger, Kenneth H. Karlsen, and John D. Towers,
*An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections*, SIAM J. Numer. Anal.**47**(2009), no. 3, 1684–1712. MR**2505870**, DOI 10.1137/07069314X - José Carrillo,
*Entropy solutions for nonlinear degenerate problems*, Arch. Ration. Mech. Anal.**147**(1999), no. 4, 269–361. MR**1709116**, DOI 10.1007/s002050050152 - Gui-Qiang Chen and Hermano Frid,
*Divergence-measure fields and hyperbolic conservation laws*, Arch. Ration. Mech. Anal.**147**(1999), no. 2, 89–118. MR**1702637**, DOI 10.1007/s002050050146 - François Dubois and Philippe LeFloch,
*Boundary conditions for nonlinear hyperbolic systems of conservation laws*, J. Differential Equations**71**(1988), no. 1, 93–122. MR**922200**, DOI 10.1016/0022-0396(88)90040-X - Lawrence C. Evans and Ronald F. Gariepy,
*Measure theory and fine properties of functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR**1158660** - R. Eymard, T. Gallouët, and R. Herbin,
*Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation*, Chinese Ann. Math. Ser. B**16**(1995), no. 1, 1–14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), no. 1, 119. MR**1338923** - S. N. Kružkov,
*First order quasilinear equations with several independent variables.*, Mat. Sb. (N.S.)**81 (123)**(1970), 228–255 (Russian). MR**0267257** - S. N. Kruzhkov and E. Yu. Panov,
*Osgood’s type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order*, Ann. Univ. Ferrara Sez. VII (N.S.)**40**(1994), 31–54 (1996) (English, with English and Italian summaries). MR**1399621** - Young-Sam Kwon and Alexis Vasseur,
*Strong traces for solutions to scalar conservation laws with general flux*, Arch. Ration. Mech. Anal.**185**(2007), no. 3, 495–513. MR**2322819**, DOI 10.1007/s00205-007-0055-7 - P.-L. Lions, B. Perthame, and E. Tadmor,
*A kinetic formulation of multidimensional scalar conservation laws and related equations*, J. Amer. Math. Soc.**7**(1994), no. 1, 169–191. MR**1201239**, DOI 10.1090/S0894-0347-1994-1201239-3 - J. Málek, J. Nečas, M. Rokyta, and M. Růžička,
*Weak and measure-valued solutions to evolutionary PDEs*, Applied Mathematics and Mathematical Computation, vol. 13, Chapman & Hall, London, 1996. MR**1409366**, DOI 10.1007/978-1-4899-6824-1 - Mohamed Maliki and Hamidou Touré,
*Uniqueness of entropy solutions for nonlinear degenerate parabolic problems*, J. Evol. Equ.**3**(2003), no. 4, 603–622. Dedicated to Philippe Bénilan. MR**2058053**, DOI 10.1007/s00028-003-0105-z - F. Otto,
*Ein Randwertproblem für skalare Erhaltnungssätze*(German), PhD thesis, Universität Bonn, 1993. - Felix Otto,
*Initial-boundary value problem for a scalar conservation law*, C. R. Acad. Sci. Paris Sér. I Math.**322**(1996), no. 8, 729–734 (English, with English and French summaries). MR**1387428** - Felix Otto,
*$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations*, J. Differential Equations**131**(1996), no. 1, 20–38. MR**1415045**, DOI 10.1006/jdeq.1996.0155 - E. Yu. Panov,
*On sequences of measure-valued solutions of a first-order quasilinear equation*, Mat. Sb.**185**(1994), no. 2, 87–106 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math.**81**(1995), no. 1, 211–227. MR**1264775**, DOI 10.1070/SM1995v081n01ABEH003621 - E. Yu. Panov,
*Existence of strong traces for generalized solutions of multidimensional scalar conservation laws*, J. Hyperbolic Differ. Equ.**2**(2005), no. 4, 885–908. MR**2195985**, DOI 10.1142/S0219891605000658 - E. Yu. Panov,
*Existence of strong traces for quasi-solutions of multidimensional conservation laws*, J. Hyperbolic Differ. Equ.**4**(2007), no. 4, 729–770. MR**2374223**, DOI 10.1142/S0219891607001343 - E. Yu. Panov,
*Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux*, Arch. Ration. Mech. Anal.**195**(2010), no. 2, 643–673. MR**2592291**, DOI 10.1007/s00205-009-0217-x - Benoît Perthame,
*Kinetic formulation of conservation laws*, Oxford Lecture Series in Mathematics and its Applications, vol. 21, Oxford University Press, Oxford, 2002. MR**2064166** - Alessio Porretta and Julien Vovelle,
*$L^1$ solutions to first order hyperbolic equations in bounded domains*, Comm. Partial Differential Equations**28**(2003), no. 1-2, 381–408. MR**1974461**, DOI 10.1081/PDE-120019387 - Emilie Rouvre and Gérard Gagneux,
*Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées*, Ann. Fac. Sci. Toulouse Math. (6)**10**(2001), no. 1, 163–183 (French, with English and French summaries). MR**1928992** - K. Sbihi,
*Etude de quelques E.D.P. non linéaires dans $L^1$ avec des conditions générales sur le bord*(French, English) [Study of some nonlinear PDEs in $L^1$ with general boundary conditions], PhD Thesis, University of Strasbourg, France (2006). Available at http://tel.archives-ouvertes.fr/tel-00110417 - Karima Sbihi and Petra Wittbold,
*Existence de solutions renormalisées pour un problème de Stefan non linéaire*, C. R. Math. Acad. Sci. Paris**345**(2007), no. 11, 629–632 (French, with English and French summaries). MR**2371480**, DOI 10.1016/j.crma.2007.10.042 - Guy Vallet,
*Dirichlet problem for a degenerated hyperbolic-parabolic equation*, Adv. Math. Sci. Appl.**15**(2005), no. 2, 423–450. MR**2198570** - Alexis Vasseur,
*Strong traces for solutions of multidimensional scalar conservation laws*, Arch. Ration. Mech. Anal.**160**(2001), no. 3, 181–193. MR**1869441**, DOI 10.1007/s002050100157 - Julien Vovelle,
*Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains*, Numer. Math.**90**(2002), no. 3, 563–596. MR**1884231**, DOI 10.1007/s002110100307

## Additional Information

**Boris Andreianov**- Affiliation: Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
- MR Author ID: 651069
- ORCID: 0000-0002-9314-2360
- Email: boris.andreianov@univ-fcomte.fr
**Karima Sbihi**- Affiliation: Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
- Email: sbihi_k@yahoo.fr
- Received by editor(s): June 16, 2012
- Received by editor(s) in revised form: November 5, 2012
- Published electronically: February 12, 2015
- Additional Notes: The work of the first author was partially supported by the French ANR project CoToCoLa
- © Copyright 2015
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**367**(2015), 3763-3806 - MSC (2010): Primary 35L65, 35L04; Secondary 35A01, 35A02
- DOI: https://doi.org/10.1090/S0002-9947-2015-05988-1
- MathSciNet review: 3324909