On the boundedness of certain bilinear oscillatory integral operators
HTML articles powered by AMS MathViewer
- by Salvador Rodríguez-López, David Rule and Wolfgang Staubach PDF
- Trans. Amer. Math. Soc. 367 (2015), 6971-6995 Request permission
Abstract:
We prove the global $L^2 \times L^2 \to L^1$ boundedness of bilinear oscillatory integral operators with amplitudes satisfying a Hörmander-type condition and phases satisfying appropriate growth as well as the strong non-degeneracy conditions. This is an extension of the corresponding result of R. Coifman and Y. Meyer for bilinear pseudodifferential operators, to the case of oscillatory integral operators.References
- Kenji Asada and Daisuke Fujiwara, On some oscillatory integral transformations in $L^{2}(\textbf {R}^{n})$, Japan. J. Math. (N.S.) 4 (1978), no. 2, 299–361. MR 528863, DOI 10.4099/math1924.4.299
- Árpád Bényi, Diego Maldonado, Virginia Naibo, and Rodolfo H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equations Operator Theory 67 (2010), no. 3, 341–364. MR 2660466, DOI 10.1007/s00020-010-1782-y
- Árpád Bényi and Rodolfo H. Torres, Almost orthogonality and a class of bounded bilinear pseudodifferential operators, Math. Res. Lett. 11 (2004), no. 1, 1–11. MR 2046194, DOI 10.4310/MRL.2004.v11.n1.a1
- Frédéric Bernicot and Pierre Germain, Bilinear oscillatory integrals and boundedness for new bilinear multipliers, Adv. Math. 225 (2010), no. 4, 1739–1785. MR 2680189, DOI 10.1016/j.aim.2010.03.032
- A.-P. Calderón, Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 85–96. MR 562599
- Michael Christ and Jean-Lin Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 (1987), no. 1-2, 51–80. MR 906525, DOI 10.1007/BF02392554
- Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
- R. R. Coifman and Yves Meyer, Nonlinear harmonic analysis, operator theory and P.D.E, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 3–45. MR 864370
- David Dos Santos Ferreira and Wolfgang Staubach, Global and local regularity of Fourier integral operators on weighted and unweighted spaces, Mem. Amer. Math. Soc. 229 (2014), no. 1074, xiv+65. MR 3185074
- Loukas Grafakos, Classical and modern Fourier analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004. MR 2449250
- Loukas Grafakos and Marco M. Peloso, Bilinear Fourier integral operators, J. Pseudo-Differ. Oper. Appl. 1 (2010), no. 2, 161–182. MR 2679898, DOI 10.1007/s11868-010-0011-4
- Loukas Grafakos and Rodolfo H. Torres, Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1153–1176. MR 1867376, DOI 10.1090/S0002-9947-01-02912-9
- Lars Hörmander, Pseudo-differential operators and hypoelliptic equations, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 138–183. MR 0383152
- Steve Hofmann, A local $Tb$ theorem for square functions, Perspectives in partial differential equations, harmonic analysis and applications, Proc. Sympos. Pure Math., vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 175–185. MR 2500492, DOI 10.1090/pspum/079/2500492
- Nicholas Michalowski, David Rule, and Wolfgang Staubach, Multilinear pseudodifferential operators beyond Calderón-Zygmund theory, J. Math. Anal. Appl. 414 (2014), no. 1, 149–165. MR 3165300, DOI 10.1016/j.jmaa.2013.12.062
- Salvador Rodríguez-López, David Rule, and Wolfgang Staubach, A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators, Adv. Math. 264 (2014), 1–54. MR 3250279, DOI 10.1016/j.aim.2014.07.009
- Salvador Rodríguez-López and Wolfgang Staubach, Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators, J. Funct. Anal. 264 (2013), no. 10, 2356–2385. MR 3035059, DOI 10.1016/j.jfa.2013.02.018
- Michael Ruzhansky and Mitsuru Sugimoto, Weighted Sobolev $L^2$ estimates for a class of Fourier integral operators, Math. Nachr. 284 (2011), no. 13, 1715–1738. MR 2832678, DOI 10.1002/mana.200910080
- Michael Ruzhansky and Mitsuru Sugimoto, Global $L^2$-boundedness theorems for a class of Fourier integral operators, Comm. Partial Differential Equations 31 (2006), no. 4-6, 547–569. MR 2233032, DOI 10.1080/03605300500455958
- M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334, DOI 10.1007/978-3-642-56579-3
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Additional Information
- Salvador Rodríguez-López
- Affiliation: Department of Mathematics, Uppsala University, 751 06 Uppsala, Sweden
- Address at time of publication: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- Email: salvador@math.uu.se, s.rodriguez-lopez@imperial.ac.uk
- David Rule
- Affiliation: Mathematics Institute, Linköping University, 581 83 Linköping, Sweden
- Email: david.rule@liu.se
- Wolfgang Staubach
- Affiliation: Department of Mathematics, Uppsala University, 751 06 Uppsala, Sweden
- MR Author ID: 675031
- Email: wulf@math.uu.se
- Received by editor(s): February 13, 2013
- Received by editor(s) in revised form: June 18, 2013
- Published electronically: March 13, 2015
- Additional Notes: The first author was partially supported by the Grant MTM2010-14946
The third author was partially supported by a grant from the Crawfoord Foundation - © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 6971-6995
- MSC (2010): Primary 35S30, 42B20, 42B99
- DOI: https://doi.org/10.1090/S0002-9947-2015-06244-8
- MathSciNet review: 3378820