Minimal surfaces in finite volume noncompact hyperbolic -manifolds
Authors:
Pascal Collin, Laurent Hauswirth, Laurent Mazet and Harold Rosenberg
Journal:
Trans. Amer. Math. Soc. 369 (2017), 4293-4309
MSC (2010):
Primary 53A10
DOI:
https://doi.org/10.1090/tran/6859
Published electronically:
February 23, 2017
Corrigendum:
Trans. Amer. Math. Soc. 372 (2019), 7521-7524.
MathSciNet review:
3624410
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic -manifold
. We also obtain a least area, incompressible, properly embedded, finite topology,
-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.
- [1] Colin C. Adams, Thrice-punctured spheres in hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 287 (1985), no. 2, 645–656. MR 768730, https://doi.org/10.1090/S0002-9947-1985-0768730-6
- [2] Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic 𝑛-manifolds, Comment. Math. Helv. 58 (1983), no. 2, 264–290. MR 705537, https://doi.org/10.1007/BF02564636
- [3] Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310
- [4] Tobias H. Colding and Camillo De Lellis, The min-max construction of minimal surfaces, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 75–107. MR 2039986, https://doi.org/10.4310/SDG.2003.v8.n1.a3
- [5]
Pascal Collin, Laurent Hauswirth, and Harold Rosenberg,
Minimal surfaces in finite volume hyperbolic-manifolds
and in
,
a finite area hyperbolic surface, to appear in Amer. J. Math.
- [6] George K. Francis, A topological picturebook, Springer-Verlag, New York, 1987. MR 880519
- [7]
H. Gieseking,
Analytische Untersuchungen Uber Topologische Gruppen,
PhD thesis, Muenster, 1912. - [8] Joel Hass, Acylindrical surfaces in 3-manifolds, Michigan Math. J. 42 (1995), no. 2, 357–365. MR 1342495, https://doi.org/10.1307/mmj/1029005233
- [9] Joel Hass, J. Hyam Rubinstein, and Shicheng Wang, Boundary slopes of immersed surfaces in 3-manifolds, J. Differential Geom. 52 (1999), no. 2, 303–325. MR 1758298
- [10] Joel Hass and Peter Scott, The existence of least area surfaces in 3-manifolds, Trans. Amer. Math. Soc. 310 (1988), no. 1, 87–114. MR 965747, https://doi.org/10.1090/S0002-9947-1988-0965747-6
- [11] John Hempel, 3-manifolds, AMS Chelsea Publishing, Providence, RI, 2004. Reprint of the 1976 original. MR 2098385
- [12] William H. Meeks III and Joaquín Pérez, A survey on classical minimal surface theory, University Lecture Series, vol. 60, American Mathematical Society, Providence, RI, 2012. MR 3012474
- [13] Jon T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Bull. Amer. Math. Soc. 82 (1976), no. 3, 503–504. MR 405219, https://doi.org/10.1090/S0002-9904-1976-14075-X
- [14] Konrad Polthier, New periodic minimal surfaces in 𝐻³, Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems (Canberra, 1990) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 26, Austral. Nat. Univ., Canberra, 1991, pp. 201–210. MR 1139040
- [15] Robert Riley, A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31 (2013), no. 2, 104–115. MR 3057120, https://doi.org/10.1016/j.exmath.2013.01.003
- [16] Harold Rosenberg, Rabah Souam, and Eric Toubiana, General curvature estimates for stable 𝐻-surfaces in 3-manifolds and applications, J. Differential Geom. 84 (2010), no. 3, 623–648. MR 2669367
- [17] Daniel Ruberman, Mutation and volumes of knots in 𝑆³, Invent. Math. 90 (1987), no. 1, 189–215. MR 906585, https://doi.org/10.1007/BF01389038
- [18]
Alan H. Schoen,
Infinite periodic minimal surfaces without self-intersections,
NASA technical note, D-5 541, 1970. - [19] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- [20]
William P. Thurston,
The geometry and topology of three-dimensional,
Princeton University lecture notes, 1979. - [21] William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
- [22] Karen K. Uhlenbeck, Closed minimal surfaces in hyperbolic 3-manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 147–168. MR 795233
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53A10
Retrieve articles in all journals with MSC (2010): 53A10
Additional Information
Pascal Collin
Affiliation:
Institut de mathematiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse cedex, France
Email:
collin@math.ups-tlse.fr
Laurent Hauswirth
Affiliation:
Université Paris-Est, LAMA (UMR 8050), UPEM, UPEC, CNRS, F-77454, Marne-la-Vallee, France
Email:
hauswirth@univ-mlv.fr
Laurent Mazet
Affiliation:
Université Paris-Est, LAMA (UMR 8050), UPEC, UPEM, CNRS, 61, avenue du Général de Gaulle, F-94010 Créteil cedex, France
Email:
laurent.mazet@math.cnrs.fr
Harold Rosenberg
Affiliation:
Instituto Nacional de Matematica Pura e Aplicada (IMPA), Estrada Dona Castorina 110, 22460-320, Rio de Janeiro-RJ, Brazil
Email:
rosen@impa.br
DOI:
https://doi.org/10.1090/tran/6859
Received by editor(s):
August 19, 2015
Received by editor(s) in revised form:
September 19, 2015
Published electronically:
February 23, 2017
Additional Notes:
The authors were partially supported by grant ANR-11-IS01-0002.
Article copyright:
© Copyright 2017
American Mathematical Society