Isotropic measures and stronger forms of the reverse isoperimetric inequality
HTML articles powered by AMS MathViewer
- by Károly J. Böröczky and Daniel Hug PDF
- Trans. Amer. Math. Soc. 369 (2017), 6987-7019 Request permission
Abstract:
The reverse isoperimetric inequality, due to Keith Ball, states that if $K$ is an $n$-dimensional convex body, then there is an affine image $\tilde {K}$ of $K$ for which $S(\tilde {K})^n/V(\tilde {K})^{n-1}$ is bounded from above by the corresponding expression for a regular $n$-dimensional simplex, where $S$ and $V$ denote the surface area and volume functional. It was shown by Franck Barthe that the upper bound is attained only if $K$ is a simplex. The discussion of the equality case is based on the equality case in the geometric form of the Brascamp-Lieb inequality. The present paper establishes stability versions of the reverse isoperimetric inequality and of the corresponding inequality for isotropic measures.References
- Keith Ball, Volumes of sections of cubes and related problems, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251–260. MR 1008726, DOI 10.1007/BFb0090058
- Keith Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), no. 2, 351–359. MR 1136445, DOI 10.1112/jlms/s2-44.2.351
- Keith Ball, Convex geometry and functional analysis, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 161–194. MR 1863692, DOI 10.1016/S1874-5849(01)80006-1
- Franck Barthe, Inégalités de Brascamp-Lieb et convexité, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 8, 885–888 (French, with English and French summaries). MR 1450443, DOI 10.1016/S0764-4442(97)86963-7
- Franck Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), no. 2, 335–361. MR 1650312, DOI 10.1007/s002220050267
- F. Barthe, A continuous version of the Brascamp-Lieb inequalities, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 53–63. MR 2087150, DOI 10.1007/978-3-540-44489-3_{6}
- F. Barthe and D. Cordero-Erausquin, Invariances in variance estimates, Proc. Lond. Math. Soc. (3) 106 (2013), no. 1, 33–64. MR 3020738, DOI 10.1112/plms/pds011
- Franck Barthe, Dario Cordero-Erausquin, Michel Ledoux, and Bernard Maurey, Correlation and Brascamp-Lieb inequalities for Markov semigroups, Int. Math. Res. Not. IMRN 10 (2011), 2177–2216. MR 2806562, DOI 10.1093/imrn/rnq114
- Felix Behrend, Über einige Affininvarianten konvexer Bereiche, Math. Ann. 113 (1937), no. 1, 713–747 (German). MR 1513119, DOI 10.1007/BF01571662
- Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008), no. 5, 1343–1415. MR 2377493, DOI 10.1007/s00039-007-0619-6
- Károly J. Böröczky and Martin Henk, Cone-volume measure and stability, Adv. Math. 306 (2017), 24–50. MR 3581297, DOI 10.1016/j.aim.2016.10.005
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine images of isotropic measures, J. Differential Geom. 99 (2015), no. 3, 407–442. MR 3316972
- Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151–173. MR 412366, DOI 10.1016/0001-8708(76)90184-5
- Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, vol. 196, American Mathematical Society, Providence, RI, 2014. MR 3185453, DOI 10.1090/surv/196
- Eric A. Carlen and Dario Cordero-Erausquin, Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities, Geom. Funct. Anal. 19 (2009), no. 2, 373–405. MR 2545242, DOI 10.1007/s00039-009-0001-y
- L. Dümbgen, Bounding standard Gaussian tail probabilities, arxiv:1012.2063v3
- A. Figalli, F. Maggi, and A. Pratelli, A refined Brunn-Minkowski inequality for convex sets, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 6, 2511–2519. MR 2569906, DOI 10.1016/j.anihpc.2009.07.004
- A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), no. 1, 167–211. MR 2672283, DOI 10.1007/s00222-010-0261-z
- N. Fusco, F. Maggi, and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168 (2008), no. 3, 941–980. MR 2456887, DOI 10.4007/annals.2008.168.941
- A. A. Giannopoulos and V. D. Milman, Extremal problems and isotropic positions of convex bodies, Israel J. Math. 117 (2000), 29–60. MR 1760584, DOI 10.1007/BF02773562
- Apostolos A. Giannopoulos and Vitali D. Milman, Euclidean structure in finite dimensional normed spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 707–779. MR 1863705, DOI 10.1016/S1874-5849(01)80019-X
- A. Giannopoulos and M. Papadimitrakis, Isotropic surface area measures, Mathematika 46 (1999), no. 1, 1–13. MR 1750398, DOI 10.1112/S0025579300007518
- Robert D. Gordon, Values of Mills’ ratio of area to bounding ordinate and of the normal probability integral for large values of the argument, Ann. Math. Statistics 12 (1941), 364–366. MR 5558, DOI 10.1214/aoms/1177731721
- H. Groemer, Stability properties of geometric inequalities, Amer. Math. Monthly 97 (1990), no. 5, 382–394. MR 1048910, DOI 10.2307/2324388
- H. Groemer, Stability of geometric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 125–150. MR 1242978
- H. Groemer and R. Schneider, Stability estimates for some geometric inequalities, Bull. London Math. Soc. 23 (1991), no. 1, 67–74. MR 1111537, DOI 10.1112/blms/23.1.67
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Peter M. Gruber and Franz E. Schuster, An arithmetic proof of John’s ellipsoid theorem, Arch. Math. (Basel) 85 (2005), no. 1, 82–88. MR 2155113, DOI 10.1007/s00013-005-1326-x
- B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257–1261. MR 124818, DOI 10.2140/pjm.1960.10.1257
- Olivier Guédon and Emanuel Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures, Geom. Funct. Anal. 21 (2011), no. 5, 1043–1068. MR 2846382, DOI 10.1007/s00039-011-0136-5
- William Gustin, An isoperimetric minimax, Pacific J. Math. 3 (1953), 403–405. MR 56316, DOI 10.2140/pjm.1953.3.403
- Fritz John, Polar correspondence with respect to a convex region, Duke Math. J. 3 (1937), no. 2, 355–369. MR 1545993, DOI 10.1215/S0012-7094-37-00327-2
- R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), no. 3-4, 541–559. MR 1318794, DOI 10.1007/BF02574061
- Bo’az Klartag, A Berry-Esseen type inequality for convex bodies with an unconditional basis, Probab. Theory Related Fields 145 (2009), no. 1-2, 1–33. MR 2520120, DOI 10.1007/s00440-008-0158-6
- Bo’az Klartag, On nearly radial marginals of high-dimensional probability measures, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 723–754. MR 2639317, DOI 10.4171/JEMS/213
- Bo’az Klartag and Emanuel Milman, Centroid bodies and the logarithmic Laplace transform—a unified approach, J. Funct. Anal. 262 (2012), no. 1, 10–34. MR 2852254, DOI 10.1016/j.jfa.2011.09.003
- Elliott H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no. 1, 179–208. MR 1069246, DOI 10.1007/BF01233426
- Erwin Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151–176. MR 1242979, DOI 10.1016/B978-0-444-89596-7.50010-9
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Volume inequalities for subspaces of $L_p$, J. Differential Geom. 68 (2004), no. 1, 159–184. MR 2152912
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Volume inequalities for isotropic measures, Amer. J. Math. 129 (2007), no. 6, 1711–1723. MR 2369894, DOI 10.1353/ajm.2007.0038
- C. M. Petty, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc. 12 (1961), 824–828. MR 130618, DOI 10.1090/S0002-9939-1961-0130618-0
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
Additional Information
- Károly J. Böröczky
- Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13-15, Hungary – and – Central European University, Nador utca 9, Budapest, H-1051 Hungary
- Email: carlos@renyi.hu
- Daniel Hug
- Affiliation: Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
- MR Author ID: 363423
- Email: daniel.hug@kit.edu
- Received by editor(s): February 10, 2015
- Received by editor(s) in revised form: October 2, 2015
- Published electronically: March 1, 2017
- Additional Notes: The first author was supported by NKFIH 109789 and 116451
The second author was supported by DFG grants FOR 1548 and HU 1874/4-2 - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 6987-7019
- MSC (2010): Primary 52A40; Secondary 52A38, 52B12, 26D15
- DOI: https://doi.org/10.1090/tran/6857
- MathSciNet review: 3683100