## Lévy-Khintchine random matrices and the Poisson weighted infinite skeleton tree

HTML articles powered by AMS MathViewer

- by Paul Jung PDF
- Trans. Amer. Math. Soc.
**370**(2018), 641-668 Request permission

## Abstract:

We study a class of Hermitian random matrices which includes Wigner matrices, heavy-tailed random matrices, and sparse random matrices such as adjacency matrices of Erdős-Rényi random graphs with $p_n\sim \frac 1 n$. Our $n\times n$ random matrices have real entries which are i.i.d. up to symmetry. The distribution of entries depends on $n$, and we require row sums to converge in distribution. It is then well-known that the limit distribution must be infinitely divisible.

We show that a limiting empirical spectral distribution (LSD) exists and, via local weak convergence of associated graphs, that the LSD corresponds to the spectral measure associated to the root of a graph which is formed by connecting infinitely many Poisson weighted infinite trees using a backbone structure of special edges called “cords to infinity”. One example covered by the results are matrices with i.i.d. entries having infinite second moments but normalized to be in the Gaussian domain of attraction. In this case, the limiting graph is $\mathbb {N}$ rooted at $1$, so the LSD is the semicircle law.

## References

- Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni,
*An introduction to random matrices*, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. MR**2760897** - David Aldous,
*Asymptotics in the random assignment problem*, Probab. Theory Related Fields**93**(1992), no. 4, 507–534. MR**1183889**, DOI 10.1007/BF01192719 - David J. Aldous,
*The $\zeta (2)$ limit in the random assignment problem*, Random Structures Algorithms**18**(2001), no. 4, 381–418. MR**1839499**, DOI 10.1002/rsa.1015 - Luigi Accardi, Romuald Lenczewski, and RafałSałapata,
*Decompositions of the free product of graphs*, Infin. Dimens. Anal. Quantum Probab. Relat. Top.**10**(2007), no. 3, 303–334. MR**2354364**, DOI 10.1142/S0219025707002750 - David Aldous and J. Michael Steele,
*The objective method: probabilistic combinatorial optimization and local weak convergence*, Probability on discrete structures, Encyclopaedia Math. Sci., vol. 110, Springer, Berlin, 2004, pp. 1–72. MR**2023650**, DOI 10.1007/978-3-662-09444-0_{1} - Gérard Ben Arous and Alice Guionnet,
*The spectrum of heavy tailed random matrices*, Comm. Math. Phys.**278**(2008), no. 3, 715–751. MR**2373441**, DOI 10.1007/s00220-007-0389-x - Charles Bordenave and Djalil Chafaï,
*Around the circular law*, Probab. Surv.**9**(2012), 1–89. MR**2908617**, DOI 10.1214/11-PS183 - Charles Bordenave, Pietro Caputo, and Djalil Chafaï,
*Spectrum of large random reversible Markov chains: heavy-tailed weights on the complete graph*, Ann. Probab.**39**(2011), no. 4, 1544–1590. MR**2857250**, DOI 10.1214/10-AOP587 - Charles Bordenave, Pietro Caputo, and Djalil Chafaï,
*Spectrum of non-Hermitian heavy tailed random matrices*, Comm. Math. Phys.**307**(2011), no. 2, 513–560. MR**2837123**, DOI 10.1007/s00220-011-1331-9 - M. Bauer and O. Golinelli,
*Random incidence matrices: moments of the spectral density*, J. Statist. Phys.**103**(2001), no. 1-2, 301–337. MR**1828732**, DOI 10.1023/A:1004879905284 - Florent Benaych-Georges,
*Classical and free infinitely divisible distributions and random matrices*, Ann. Probab.**33**(2005), no. 3, 1134–1170. MR**2135315**, DOI 10.1214/009117904000000982 - Florent Benaych-Georges, Alice Guionnet, and Camille Male,
*Central limit theorems for linear statistics of heavy tailed random matrices*, Comm. Math. Phys.**329**(2014), no. 2, 641–686. MR**3210147**, DOI 10.1007/s00220-014-1975-3 - Patrick Billingsley,
*Probability and measure*, 2nd ed., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. MR**830424** - Zdzisław Burda, Jerzy Jurkiewicz, Maciej A. Nowak, Gabor Papp, and Ismail Zahed,
*Free random Lévy and Wigner-Lévy matrices*, Phys. Rev. E (3)**75**(2007), no. 5, 051126, 11. MR**2361817**, DOI 10.1103/PhysRevE.75.051126 - Charles Bordenave and Marc Lelarge,
*Resolvent of large random graphs*, Random Structures Algorithms**37**(2010), no. 3, 332–352. MR**2724665**, DOI 10.1002/rsa.20313 - Itai Benjamini and Oded Schramm,
*Recurrence of distributional limits of finite planar graphs*, Electron. J. Probab.**6**(2001), no. 23, 13. MR**1873300**, DOI 10.1214/EJP.v6-96 - Zhidong Bai and Jack W. Silverstein,
*Spectral analysis of large dimensional random matrices*, 2nd ed., Springer Series in Statistics, Springer, New York, 2010. MR**2567175**, DOI 10.1007/978-1-4419-0661-8 - P. Cizeau and J. P. Bouchaud,
*Theory of Lévy matrices*, Physical Review E**50**(1994), no. 3, 1810. - R. Brent Dozier and Jack W. Silverstein,
*On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices*, J. Multivariate Anal.**98**(2007), no. 4, 678–694. MR**2322123**, DOI 10.1016/j.jmva.2006.09.006 - Noureddine El Karoui,
*On information plus noise kernel random matrices*, Ann. Statist.**38**(2010), no. 5, 3191–3216. MR**2722468**, DOI 10.1214/10-AOS801 - Joshua Feinberg and A. Zee,
*Non-Hermitian random matrix theory: method of Hermitian reduction*, Nuclear Phys. B**504**(1997), no. 3, 579–608. MR**1488584**, DOI 10.1016/S0550-3213(97)00502-6 - Adityanand Guntuboyina and Hannes Leeb,
*Concentration of the spectral measure of large Wishart matrices with dependent entries*, Electron. Commun. Probab.**14**(2009), 334–342. MR**2535081**, DOI 10.1214/ECP.v14-1483 - Akihito Hora and Nobuaki Obata,
*Quantum probability and spectral analysis of graphs*, Theoretical and Mathematical Physics, Springer, Berlin, 2007. With a foreword by Luigi Accardi. MR**2316893** - Olav Kallenberg,
*Foundations of modern probability*, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR**1876169**, DOI 10.1007/978-1-4757-4015-8 - Abel Klein,
*Extended states in the Anderson model on the Bethe lattice*, Adv. Math.**133**(1998), no. 1, 163–184. MR**1492789**, DOI 10.1006/aima.1997.1688 - O. Khorunzhy, M. Shcherbina, and V. Vengerovsky,
*Eigenvalue distribution of large weighted random graphs*, J. Math. Phys.**45**(2004), no. 4, 1648–1672. MR**2043849**, DOI 10.1063/1.1667610 - Reimer Kühn,
*Spectra of sparse random matrices*, J. Phys. A**41**(2008), no. 29, 295002, 21. MR**2455271**, DOI 10.1088/1751-8113/41/29/295002 - Andreas E. Kyprianou,
*Introductory lectures on fluctuations of Lévy processes with applications*, Universitext, Springer-Verlag, Berlin, 2006. MR**2250061** - Camille Male,
*The limiting distributions of large heavy Wigner and arbitrary random matrices*, J. Funct. Anal.**272**(2017), no. 1, 1–46. MR**3567500**, DOI 10.1016/j.jfa.2016.10.001 - V. A. Marčenko and L. A. Pastur,
*Distribution of eigenvalues in certain sets of random matrices*, Mat. Sb. (N.S.)**72 (114)**(1967), 507–536 (Russian). MR**0208649** - Alexandru Nica and Roland Speicher,
*Lectures on the combinatorics of free probability*, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR**2266879**, DOI 10.1017/CBO9780511735127 - G. J. Rodgers and A. J. Bray,
*Density of states of a sparse random matrix*, Phys. Rev. B (3)**37**(1988), no. 7, 3557–3562. MR**932406**, DOI 10.1103/PhysRevB.37.3557 - Sidney I. Resnick,
*Heavy-tail phenomena*, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2007. Probabilistic and statistical modeling. MR**2271424** - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I*, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR**751959** - Øyvind Ryan,
*On the limit distributions of random matrices with independent or free entries*, Comm. Math. Phys.**193**(1998), no. 3, 595–626. MR**1624843**, DOI 10.1007/s002200050340 - Alexander Soshnikov,
*Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails*, Electron. Comm. Probab.**9**(2004), 82–91. MR**2081462**, DOI 10.1214/ECP.v9-1112 - J. Michael Steele,
*Minimal spanning trees for graphs with random edge lengths*, Mathematics and computer science, II (Versailles, 2002) Trends Math., Birkhäuser, Basel, 2002, pp. 223–245. MR**1940139** - Terence Tao,
*Topics in random matrix theory*, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. MR**2906465**, DOI 10.1090/gsm/132 - Eugene P. Wigner,
*Characteristic vectors of bordered matrices with infinite dimensions*, Ann. of Math. (2)**62**(1955), 548–564. MR**77805**, DOI 10.2307/1970079 - Joachim Weidmann,
*Linear operators in Hilbert spaces*, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR**566954**, DOI 10.1007/978-1-4612-6027-1 - Inna Zakharevich,
*A generalization of Wigner’s law*, Comm. Math. Phys.**268**(2006), no. 2, 403–414. MR**2259200**, DOI 10.1007/s00220-006-0074-5

## Additional Information

**Paul Jung**- Affiliation: Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- MR Author ID: 718058
- ORCID: 0000-0003-0845-5379
- Email: paul.jung@gmail.com
- Received by editor(s): August 4, 2014
- Received by editor(s) in revised form: March 12, 2015, February 13, 2016, and April 18, 2016
- Published electronically: July 7, 2017
- Additional Notes: The author’s research was partially supported by NSA grant H98230-14-1-0144 while at the University of Alabama Birmingham.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 641-668 - MSC (2010): Primary 15B52, 60B20, 60G51
- DOI: https://doi.org/10.1090/tran/6977
- MathSciNet review: 3717992