Pruned Hurwitz numbers
HTML articles powered by AMS MathViewer
- by Norman Do and Paul Norbury PDF
- Trans. Amer. Math. Soc. 370 (2018), 3053-3084 Request permission
Abstract:
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten–Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.References
- Martin Aigner and Günter M. Ziegler, Proofs from The Book, 5th ed., Springer-Verlag, Berlin, 2014. Including illustrations by Karl H. Hofmann. MR 3288091, DOI 10.1007/978-3-662-44205-0
- V. I. Arnol′d, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with an identical number of vertices and edges, Funktsional. Anal. i Prilozhen. 30 (1996), no. 1, 1–17, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 30 (1996), no. 1, 1–14. MR 1387484, DOI 10.1007/BF02383392
- D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980), no. 2, 109–157. MR 603127, DOI 10.1016/0196-8858(80)90008-1
- Gaëtan Borot, Bertrand Eynard, Motohico Mulase, and Brad Safnuk, A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011), no. 2, 522–540. MR 2746135, DOI 10.1016/j.geomphys.2010.10.017
- Vincent Bouchard, Daniel Hernández Serrano, Xiaojun Liu, and Motohico Mulase, Mirror symmetry for orbifold Hurwitz numbers, J. Differential Geom. 98 (2014), no. 3, 375–423. MR 3263522
- Vincent Bouchard and Marcos Mariño, Hurwitz numbers, matrix models and enumerative geometry, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 263–283. MR 2483754, DOI 10.1090/pspum/078/2483754
- Leonid Chekhov and Bertrand Eynard, Hermitian matrix model free energy: Feynman graph technique for all genera, J. High Energy Phys. 3 (2006), 014, 18. MR 2222762, DOI 10.1088/1126-6708/2006/03/014
- Norman Do, Oliver Leigh, and Paul Norbury, Orbifold Hurwitz numbers and Eynard-Orantin invariants, Math. Res. Lett. 23 (2016), no. 5, 1281–1327. MR 3601067, DOI 10.4310/MRL.2016.v23.n5.a3
- Olivia Dumitrescu, Motohico Mulase, Brad Safnuk, and Adam Sorkin, The spectral curve of the Eynard-Orantin recursion via the Laplace transform, Algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., vol. 593, Amer. Math. Soc., Providence, RI, 2013, pp. 263–315. MR 3087960, DOI 10.1090/conm/593/11867
- P. Dunin-Barkowski, N. Orantin, S. Shadrin, and L. Spitz, Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014), no. 2, 669–700. MR 3199996, DOI 10.1007/s00220-014-1887-2
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), no. 2, 297–327. MR 1864018, DOI 10.1007/s002220100164
- Bertrand Eynard, Motohico Mulase, and Bradley Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011), no. 2, 629–670. MR 2849645, DOI 10.2977/PRIMS/47
- B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), no. 2, 347–452. MR 2346575, DOI 10.4310/CNTP.2007.v1.n2.a4
- Bertrand Eynard and Nicolas Orantin, Topological recursion in enumerative geometry and random matrices, J. Phys. A 42 (2009), no. 29, 293001, 117. MR 2519749, DOI 10.1088/1751-8113/42/29/293001
- I. P. Goulden and D. M. Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997), no. 1, 51–60. MR 1396978, DOI 10.1090/S0002-9939-97-03880-X
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Ann. Comb. 4 (2000), no. 1, 27–46. MR 1763948, DOI 10.1007/PL00001274
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- A. Hurwitz, Ueber die Anzahl der Riemann’schen Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1901), no. 1, 53–66 (German). MR 1511135, DOI 10.1007/BF01448116
- P. Johnson, R. Pandharipande, and H.-H. Tseng, Abelian Hurwitz-Hodge integrals, Michigan Math. J. 60 (2011), no. 1, 171–198. MR 2785870, DOI 10.1307/mmj/1301586310
- Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
- Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721, DOI 10.1007/978-3-540-38361-1
- Maryam Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007), no. 1, 1–23. MR 2257394, DOI 10.1090/S0894-0347-06-00526-1
- Paul Norbury, Counting lattice points in the moduli space of curves, Math. Res. Lett. 17 (2010), no. 3, 467–481. MR 2653682, DOI 10.4310/MRL.2010.v17.n3.a7
- Paul Norbury, String and dilaton equations for counting lattice points in the moduli space of curves, Trans. Amer. Math. Soc. 365 (2013), no. 4, 1687–1709. MR 3009643, DOI 10.1090/S0002-9947-2012-05559-0
- Paul Norbury and Nick Scott, Polynomials representing Eynard-Orantin invariants, Q. J. Math. 64 (2013), no. 2, 515–546. MR 3063520, DOI 10.1093/qmath/has004
- Paul Norbury and Nick Scott, Gromov-Witten invariants of $\Bbb {P}^1$ and Eynard-Orantin invariants, Geom. Topol. 18 (2014), no. 4, 1865–1910. MR 3268770, DOI 10.2140/gt.2014.18.1865
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560. MR 2199225, DOI 10.4007/annals.2006.163.517
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 325–414. MR 2483941, DOI 10.1090/pspum/080.1/2483941
- The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2013.
- W. T. Tutte, A census of planar maps, Canadian J. Math. 15 (1963), 249–271. MR 146823, DOI 10.4153/CJM-1963-029-x
- Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529
Additional Information
- Norman Do
- Affiliation: School of Mathematical Sciences, Monash University, Victoria 3800, Australia
- MR Author ID: 726659
- Email: norm.do@monash.edu
- Paul Norbury
- Affiliation: School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
- MR Author ID: 361773
- Email: pnorbury@ms.unimelb.edu.au
- Received by editor(s): November 16, 2015
- Received by editor(s) in revised form: July 14, 2016
- Published electronically: November 16, 2017
- Additional Notes: The authors were partially supported by the Australian Research Council grants DE130100650 (ND) and DP1094328 (PN)
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3053-3084
- MSC (2010): Primary 14N10; Secondary 05A15, 32G15
- DOI: https://doi.org/10.1090/tran/7021
- MathSciNet review: 3766841