Multi-travelling waves for the nonlinear Klein-Gordon equation
HTML articles powered by AMS MathViewer
- by Raphaël Côte and Yvan Martel PDF
- Trans. Amer. Math. Soc. 370 (2018), 7461-7487 Request permission
Corrigendum: Trans. Amer. Math. Soc. 375 (2022), 3755-3757.
Abstract:
For the nonlinear Klein-Gordon equation in $\mathbb {R}^{1+d}$, we prove the existence of multi-solitary waves made of any number $N$ of decoupled bound states. This extends the work of Côte and Muñoz (Forum Math. Sigma 2 (2014)) which was restricted to ground states, as were most previous similar results for other nonlinear dispersive and wave models.References
- Weiwei Ao, Monica Musso, Frank Pacard, and Juncheng Wei, Solutions without any symmetry for semilinear elliptic problems, J. Funct. Anal. 270 (2016), no. 3, 884–956. MR 3438325, DOI 10.1016/j.jfa.2015.10.015
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), no. 4, 347–375. MR 695536, DOI 10.1007/BF00250556
- J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR 1691575, DOI 10.1090/coll/046
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Vianney Combet, Multi-soliton solutions for the supercritical gKdV equations, Comm. Partial Differential Equations 36 (2011), no. 3, 380–419. MR 2763331, DOI 10.1080/03605302.2010.503770
- Vianney Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst. 34 (2014), no. 5, 1961–1993. MR 3124722, DOI 10.3934/dcds.2014.34.1961
- Raphaël Côte and Stefan Le Coz, High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 96 (2011), no. 2, 135–166 (English, with English and French summaries). MR 2818710, DOI 10.1016/j.matpur.2011.03.004
- Raphaël Côte, Yvan Martel, and Frank Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam. 27 (2011), no. 1, 273–302. MR 2815738, DOI 10.4171/RMI/636
- Raphaël Côte and Claudio Muñoz, Multi-solitons for nonlinear Klein-Gordon equations, Forum Math. Sigma 2 (2014), Paper No. e15, 38. MR 3264254, DOI 10.1017/fms.2014.13
- Raphaël Côte and Hatem Zaag, Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math. 66 (2013), no. 10, 1541–1581. MR 3084698, DOI 10.1002/cpa.21452
- Wei Yue Ding, On a conformally invariant elliptic equation on $\textbf {R}^n$, Comm. Math. Phys. 107 (1986), no. 2, 331–335. MR 863646, DOI 10.1007/BF01209398
- Manuel del Pino, Monica Musso, Frank Pacard, and Angela Pistoia, Large energy entire solutions for the Yamabe equation, J. Differential Equations 251 (2011), no. 9, 2568–2597. MR 2825341, DOI 10.1016/j.jde.2011.03.008
- Manuel del Pino, Monica Musso, Frank Pacard, and Angela Pistoia, Torus action on $S^n$ and sign-changing solutions for conformally invariant equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 1, 209–237. MR 3088442
- G. H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Mathematical Phys. 5 (1964), 1252–1254. MR 174304, DOI 10.1063/1.1704233
- T. Duyckaerts, H. Jia, C. E. Kenig, and F. Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, preprint arXiv:1601.01871.
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), no. 1, 75–144. MR 3272053, DOI 10.4310/CJM.2013.v1.n1.a3
- Thomas Duyckaerts and Frank Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), no. 6, 1787–1840. MR 2491692, DOI 10.1007/s00039-009-0707-x
- Thomas Duyckaerts and Frank Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP , posted on (2008), Art ID rpn002, 67. MR 2470571, DOI 10.1093/imrp/rpn002
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879, DOI 10.1007/BF01221125
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7
- J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985), no. 4, 487–505. MR 786279, DOI 10.1007/BF01168155
- Manoussos Grillakis, Jalal Shatah, and Walter Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), no. 1, 160–197. MR 901236, DOI 10.1016/0022-1236(87)90044-9
- Manoussos Grillakis, Jalal Shatah, and Walter Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 94 (1990), no. 2, 308–348. MR 1081647, DOI 10.1016/0022-1236(90)90016-E
- Emmanuel Hebey and Michel Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal. 119 (1994), no. 2, 298–318. MR 1261094, DOI 10.1006/jfan.1994.1012
- Joachim Krieger, Yvan Martel, and Pierre Raphaël, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math. 62 (2009), no. 11, 1501–1550. MR 2560043, DOI 10.1002/cpa.20292
- J. Krieger, K. Nakanishi, and W. Schlag, Global dynamics above the ground state energy for the one-dimensional NLKG equation, Math. Z. 272 (2012), no. 1-2, 297–316. MR 2968226, DOI 10.1007/s00209-011-0934-3
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502
- Mihai Mariş, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl. (9) 81 (2002), no. 12, 1207–1239 (English, with English and French summaries). MR 1952162, DOI 10.1016/S0021-7824(02)01274-6
- Yvan Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. MR 2170139, DOI 10.1353/ajm.2005.0033
- Kevin McLeod, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\textbf {R}^n$. II, Trans. Amer. Math. Soc. 339 (1993), no. 2, 495–505. MR 1201323, DOI 10.1090/S0002-9947-1993-1201323-X
- Frank Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), no. 2, 223–240. MR 1048692, DOI 10.1007/BF02096981
- Yvan Martel and Frank Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 6, 849–864 (English, with English and French summaries). MR 2271697, DOI 10.1016/j.anihpc.2006.01.001
- Yvan Martel and Frank Merle, Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys. 286 (2009), no. 1, 39–79. MR 2470923, DOI 10.1007/s00220-008-0685-0
- Yvan Martel and Frank Merle, Construction of multi-solitons for the energy-critical wave equation in dimension 5, Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1113–1160. MR 3544324, DOI 10.1007/s00205-016-1018-7
- Yvan Martel, Frank Merle, and Tai-Peng Tsai, Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J. 133 (2006), no. 3, 405–466. MR 2228459, DOI 10.1215/S0012-7094-06-13331-8
- Mei Ming, Frederic Rousset, and Nikolay Tzvetkov, Multi-solitons and related solutions for the water-waves system, SIAM J. Math. Anal. 47 (2015), no. 1, 897–954. MR 3315224, DOI 10.1137/140960220
- Frank Merle and Hatem Zaag, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math. 134 (2012), no. 3, 581–648. MR 2931219, DOI 10.1353/ajm.2012.0021
- Robert M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev. 18 (1976), no. 3, 412–459. MR 404890, DOI 10.1137/1018076
- Makoto Nakamura and Tohru Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci. 37 (2001), no. 3, 255–293. MR 1855424, DOI 10.2977/prims/1145477225
- Kenji Nakanishi and Wilhelm Schlag, Invariant manifolds and dispersive Hamiltonian evolution equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011. MR 2847755, DOI 10.4171/095
- K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differential Equations 250 (2011), no. 5, 2299–2333. MR 2756065, DOI 10.1016/j.jde.2010.10.027
- Robert L. Pego and Michael I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London Ser. A 340 (1992), no. 1656, 47–94. MR 1177566, DOI 10.1098/rsta.1992.0055
- Peter Cornelis Schuur, Asymptotic analysis of soliton problems, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986. An inverse scattering approach. MR 874343, DOI 10.1007/BFb0073054
- James Serrin and Moxun Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (2000), no. 3, 897–923. MR 1803216, DOI 10.1512/iumj.2000.49.1893
- Jalal Shatah and Walter Strauss, Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985), no. 2, 173–190. MR 804458, DOI 10.1007/BF01212446
- Terence Tao, Low regularity semi-linear wave equations, Comm. Partial Differential Equations 24 (1999), no. 3-4, 599–629. MR 1683051, DOI 10.1080/03605309908821435
- Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
- Michael I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67. MR 820338, DOI 10.1002/cpa.3160390103
- N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.
- V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
Additional Information
- Raphaël Côte
- Affiliation: Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
- Email: cote@math.unistra.fr
- Yvan Martel
- Affiliation: CMLS, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
- MR Author ID: 367956
- Email: yvan.martel@polytechnique.edu
- Received by editor(s): December 6, 2016
- Received by editor(s) in revised form: May 11, 2017
- Published electronically: June 20, 2018
- Additional Notes: The authors were supported in part by the ERC advanced grant 291214 BLOWDISOL. The first author was also supported in part by the ANR contract MAToS ANR-14-CE25-0009-01.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 7461-7487
- MSC (2010): Primary 35Q51; Secondary 35L71, 35Q40
- DOI: https://doi.org/10.1090/tran/7303
- MathSciNet review: 3841855