Reducibility in Sasakian geometry
HTML articles powered by AMS MathViewer
- by Charles P. Boyer, Hongnian Huang, Eveline Legendre and Christina W. Tønnesen-Friedman PDF
- Trans. Amer. Math. Soc. 370 (2018), 6825-6869 Request permission
Abstract:
The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham decomposition theorem; however, we need a mild technical assumption on the Sasaki automorphism group which includes the toric case. Next we introduce the concept of cone reducible and consider $S^3$ bundles over a smooth projective algebraic variety where we give a classification result concerning contact structures admitting the action of a 2-torus of Reeb type. In particular, we can classify all such Sasakian structures up to contact isotopy on $S^3$ bundles over a Riemann surface of genus greater than zero. Finally, we show that in the toric case an extremal Sasaki metric on a Sasaki join always splits.References
- Miguel Abreu, Kähler metrics on toric orbifolds, J. Differential Geom. 58 (2001), no. 1, 151–187. MR 1895351
- Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. II. Global classification, J. Differential Geom. 68 (2004), no. 2, 277–345. MR 2144249
- Vestislav Apostolov and Hongnian Huang, A splitting theorem for extremal Kähler metrics, J. Geom. Anal. 25 (2015), no. 1, 149–170. MR 3299273, DOI 10.1007/s12220-013-9417-6
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- Charles P. Boyer and Krzysztof Galicki, On Sasakian-Einstein geometry, Internat. J. Math. 11 (2000), no. 7, 873–909. MR 1792957, DOI 10.1142/S0129167X00000477
- Charles P. Boyer and Krzysztof Galicki, A note on toric contact geometry, J. Geom. Phys. 35 (2000), no. 4, 288–298. MR 1780757, DOI 10.1016/S0393-0440(99)00078-9
- Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008. MR 2382957
- Charles P. Boyer, Krzysztof Galicki, and Liviu Ornea, Constructions in Sasakian geometry, Math. Z. 257 (2007), no. 4, 907–924. MR 2342558, DOI 10.1007/s00209-007-0151-2
- Charles P. Boyer, Krzysztof Galicki, and Santiago R. Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008), no. 3, 705–733. MR 2386725, DOI 10.1007/s00220-008-0429-1
- Charles P. Boyer, Hongnian Huang, Eveline Legendre, and Christina W. Tønnesen-Friedman, The Einstein-Hilbert functional and the Sasaki-Futaki invariant, Int. Math. Res. Not. IMRN 7 (2017), 1942–1974. MR 3658189, DOI 10.1093/imrn/rnw076
- A. Banyaga and P. Molino, Géométrie des formes de contact complètement intégrables de type toriques, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992 (Montpellier), Univ. Montpellier II, Montpellier, 1993, pp. 1–25 (French). MR 1223155
- Charles P. Boyer, Leonardo Macarini, and Otto van Koert, Brieskorn manifolds, positive Sasakian geometry, and contact topology, Forum Math. 28 (2016), no. 5, 943–965. MR 3543703, DOI 10.1515/forum-2015-0142
- Charles P. Boyer, Maximal tori in contactomorphism groups, Differential Geom. Appl. 31 (2013), no. 2, 190–216. MR 3032643, DOI 10.1016/j.difgeo.2013.01.005
- Charles P. Boyer and Justin Pati, On the equivalence problem for toric contact structures on $S^3$-bundles over $S^2$, Pacific J. Math. 267 (2014), no. 2, 277–324. MR 3207586, DOI 10.2140/pjm.2014.267.277
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Charles P. Boyer and Christina W. Tønnesen-Friedman, Extremal Sasakian geometry on $T^2\times S^3$ and related manifolds, Compos. Math. 149 (2013), no. 8, 1431–1456. MR 3103072, DOI 10.1112/s0010437x13007094
- Charles P. Boyer and Christina W. Tønnesen-Friedman, Extremal Sasakian geometry on $S^3$-bundles over Riemann surfaces, Int. Math. Res. Not. IMRN 20 (2014), 5510–5562. MR 3271180, DOI 10.1093/imrn/rnt139
- Charles P. Boyer and Christina W. Tønnesen-Friedman, The Sasaki join, Hamiltonian 2-forms, and constant scalar curvature, J. Geom. Anal. 26 (2016), no. 2, 1023–1060. MR 3472828, DOI 10.1007/s12220-015-9583-9
- Charles P. Boyer and Craig van Coevering, Relative K-stability and extremal Sasaki metrics, Math. Res. Lett. 25 (2018), no. 1, 1–19., DOI 10.4310/MRL.2018.v25.n1.a1
- Olguţa Buşe, Deformations of Whitehead products, symplectomorphism groups, and Gromov-Witten invariants, Int. Math. Res. Not. IMRN 17 (2010), 3303–3340. MR 2680275, DOI 10.1093/imrn/rnp215
- Tristan C. Collins and Gábor Székelyhidi, K-semistability for irregular Sasakian manifolds, J. Differential Geom. 109 (2018), no. 1, 81–109. MR 3798716, DOI 10.4310/jdg/1525399217
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
- Yakov Eliashberg, Contact $3$-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192 (English, with French summary). MR 1162559, DOI 10.5802/aif.1288
- John B. Etnyre, Tight contact structures on lens spaces, Commun. Contemp. Math. 2 (2000), no. 4, 559–577. MR 1806947, DOI 10.1142/S0219199700000207
- Akito Futaki and Toshiki Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), no. 2, 199–210. MR 1314584, DOI 10.1007/BF01446626
- Emmanuel Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000), no. 3, 615–689 (French). MR 1779622, DOI 10.1007/s002220000082
- Jerome P. Gauntlett, Dario Martelli, James Sparks, and Daniel Waldram, Sasaki-Einstein metrics on $S^2\times S^3$, Adv. Theor. Math. Phys. 8 (2004), no. 4, 711–734. MR 2141499, DOI 10.4310/ATMP.2004.v8.n4.a3
- Jerome P. Gauntlett, Dario Martelli, James Sparks, and Shing-Tung Yau, Obstructions to the existence of Sasaki-Einstein metrics, Comm. Math. Phys. 273 (2007), no. 3, 803–827. MR 2318866, DOI 10.1007/s00220-007-0213-7
- R. Ganong and P. Russell, The tangent bundle of a ruled surface, Math. Ann. 271 (1985), no. 4, 527–548. MR 790114, DOI 10.1007/BF01456133
- Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309. MR 1293656
- Weiyong He, Isometry group of Sasaki-Einstein metric, C. R. Math. Acad. Sci. Paris 352 (2014), no. 1, 71–73 (English, with English and French summaries). MR 3150772, DOI 10.1016/j.crma.2013.10.037
- Ko Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000), 309–368. MR 1786111, DOI 10.2140/gt.2000.4.309
- Weiyong He and Song Sun, The generalized Frankel conjecture in Sasaki geometry, Int. Math. Res. Not. IMRN 1 (2015), 99–118. MR 3340296, DOI 10.1093/imrn/rnt185
- Hongnian Huang, A splitting theorem on toric manifolds, Math. Res. Lett. 20 (2013), no. 2, 273–278. MR 3151646, DOI 10.4310/MRL.2013.v20.n2.a5
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- K. Kodaira and D. C. Spencer, Multifoliate structures, Ann. of Math. (2) 74 (1961), 52–100. MR 148086, DOI 10.2307/1970306
- Myeonggi Kwon and Otto van Koert, Brieskorn manifolds in contact topology, Bull. Lond. Math. Soc. 48 (2016), no. 2, 173–241. MR 3483060, DOI 10.1112/blms/bdv088
- Eveline Legendre, Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics, Compos. Math. 147 (2011), no. 5, 1613–1634. MR 2834736, DOI 10.1112/S0010437X1100529X
- Eugene Lerman, Contact cuts, Israel J. Math. 124 (2001), 77–92. MR 1856505, DOI 10.1007/BF02772608
- Eugene Lerman, Contact toric manifolds, J. Symplectic Geom. 1 (2003), no. 4, 785–828. MR 2039164, DOI 10.4310/JSG.2001.v1.n4.a6
- Eugene Lerman, A convexity theorem for torus actions on contact manifolds, Illinois J. Math. 46 (2002), no. 1, 171–184. MR 1936083
- Eugene Lerman, Contact fiber bundles, J. Geom. Phys. 49 (2004), no. 1, 52–66. MR 2077244, DOI 10.1016/S0393-0440(03)00060-3
- Eugene Lerman and Susan Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201–4230. MR 1401525, DOI 10.1090/S0002-9947-97-01821-7
- Pierre Molino, Feuilletages riemanniens sur les variétés compactes; champs de Killing transverses, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 7, A421–A423 (French, with English summary). MR 554633
- Pierre Molino, Invariants structuraux des feuillages, Bull. Sci. Math. (2) 105 (1981), no. 4, 337–347 (French, with English summary). MR 640146
- Pierre Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 1, 45–76 (French). MR 653455, DOI 10.1016/1385-7258(82)90007-5
- Pierre Molino, Espace des feuilles des feuilletages riemanniens, Astérisque 116 (1984), 180–189 (French). Transversal structure of foliations (Toulouse, 1982). MR 755169
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463, DOI 10.1007/978-1-4684-8670-4
- Pierre Molino and Vlad Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), no. 1-3, 145–161 (French, with English summary). MR 788676, DOI 10.1007/BF01168350
- Dario Martelli and James Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Comm. Math. Phys. 262 (2006), no. 1, 51–89. MR 2200882, DOI 10.1007/s00220-005-1425-3
- Dario Martelli, James Sparks, and Shing-Tung Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), no. 3, 611–673. MR 2399609, DOI 10.1007/s00220-008-0479-4
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- Tatsuo Suwa, On ruled surfaces of genus $1$, J. Math. Soc. Japan 21 (1969), 291–311. MR 242198, DOI 10.2969/jmsj/02120291
- W. Thurston, The geometry and topology of $3$-manifolds, Mimeographed Notes, Princeton University, 1979.
- Peter Uebele, Symplectic homology of some Brieskorn manifolds, Math. Z. 283 (2016), no. 1-2, 243–274. MR 3489066, DOI 10.1007/s00209-015-1596-3
- Tsutomu Yamazaki, A construction of $K$-contact manifolds by a fiber join, Tohoku Math. J. (2) 51 (1999), no. 4, 433–446. MR 1725620, DOI 10.2748/tmj/1178224713
Additional Information
- Charles P. Boyer
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
- MR Author ID: 40590
- Email: cboyer@math.unm.edu
- Hongnian Huang
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
- MR Author ID: 936774
- Email: hnhuang@gmail.com
- Eveline Legendre
- Affiliation: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
- MR Author ID: 903289
- Email: eveline.legendre@math.univ-toulouse.fr
- Christina W. Tønnesen-Friedman
- Affiliation: Department of Mathematics, Union College, Schenectady, New York 12308
- Email: tonnesec@union.edu
- Received by editor(s): August 11, 2016
- Published electronically: June 26, 2018
- Additional Notes: The first author was partially supported by a grant (#245002) from the Simons Foundation.
The third author was partially supported by France ANR project EMARKS No ANR-14-CE25-0010.
The fourth author was partially supported by grant #208799 from the Simons Foundation. - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 6825-6869
- MSC (2010): Primary 53C25; Secondary 53C21
- DOI: https://doi.org/10.1090/tran/7526
- MathSciNet review: 3841834