Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 
 

 

John von Neumann 1903-1957


Author: S. Ulam
Journal: Bull. Amer. Math. Soc. 64 (1958), 1-49
DOI: https://doi.org/10.1090/S0002-9904-1958-10189-5
MathSciNet review: 0091904
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

    1. John von Neumann, Über die Lage der Nullstellen gewisser Minimumpolynome. With M. Fekete. Jber. Deutschen Math. Verein, vol. 31 (1922) pp. 125-138. 2. John von Neumann, Zur Einführung der transfiniten Ordnungszahlen, Acta Univ. Szeged vol. 1 (1923) pp. 199-208. 3. John von Neumann, Eine Axiomatisierung der Mengenlehre, J. Reine Angew. Math. vol. 154 (1925) pp. 219-240. 4. John von Neumann, Egyenletesen sürü számsorozatok, Math. Phys. Lapok vol. 32 (1925) pp. 32-40.
  • John von Neumann, A certain zero-sum two-person game equivalent to the optimal assignment problem, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 5–12. MR 0054920
  • 6. John von Neumann, Az áltálanos Nalmazelmélet axiomatikus folépitése (Doctor’s thesis, Univ. of Budapest.) Cf. [18] (1926). 7. John von Neumann, Uber die Grundlagen der Quantenmechanik. With D. Hilbert and L. Nordheim. Math. Ann. vol. 98 (1927) pp. 1-30. 8. John von Neumann, Zur Theorie der Darstellungen kontinuierlicher Gruppen, Preuss. Akad. Wiss. Sitzungsber. (1927) pp. 76-90. 9. John von Neumann, Mathematische Begrundung der Quantenmechanik, Nachr. Ges. Wiss. Göttingen (1927), pp. 1-57. 10. John von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik, Nachr. Ges. Wiss. Gottingen (1927) pp. 245-272. 11. John von Neumann, Thermodynamik quantenmechanischer Gesamtheiten, Nachr. Ges. Wiss. Göttingen (1927) pp. 273-291.
  • Marina v. N. Whitman, John von Neumann: a personal view, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 1–4. MR 1067744, DOI https://doi.org/10.1090/pspum/050/1067744
  • John von Neumann, On the theory of games of strategy, Contributions to the theory of games, Vol. IV, Annals of Mathematics Studies, no. 40, Princeton University Press, Princeton, N.J., 1959, pp. 13–42. MR 0101828
  • 14. John von Neumann, Zerlegung des Intervalles in abzählbar viele kongruente Teilmengen, Fund. Math. vol. 11 (1928) pp. 230-238.
  • Israel Halperin, The extraordinary inspiration of John von Neumann, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 15–17. MR 1067747, DOI https://doi.org/10.1090/pspum/050/1067747
  • J. v. Neumann, Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre, Math. Ann. 99 (1928), no. 1, 373–391 (German). MR 1512455, DOI https://doi.org/10.1007/BF01459102
  • Israel Halperin, The extraordinary inspiration of John von Neumann, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 15–17. MR 1067747, DOI https://doi.org/10.1090/pspum/050/1067747
  • J. v. Neumann, Die Axiomatisierung der Mengenlehre, Math. Z. 27 (1928), no. 1, 669–752 (German). MR 1544933, DOI https://doi.org/10.1007/BF01171122
  • 19. John von Neumann, Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, I. With E. Wigner. Zschr. f. Phys. vol. 47 (1928) pp. 203-220. 20. John von Neumann, Einige Bemerkungen zur Diracschen Theorie des Drehelektrons, Zschr.f. Phys. vol. 48 (1928) pp. 868-881. 21. John von Neumann, Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, II. With E. Wigner. Zschr. f. Phys. vol. 49 (1928) pp. 73-94. Cf. [19]. 22. John von Neumann, Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, III. With E. Wigner. Zschr. f. Phys. vol. 51 (1928) pp. 844-858. Cf. [19]. 23. John von Neumann, Über eine Widerspruchfreiheitsfrage der axiomatischen Mengenlehre, J. Reine Angew. Math. vol. 160 (1929) pp. 227-241.
  • J. v. Neumann, Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer Darstellungen, Math. Z. 30 (1929), no. 1, 3–42 (German). MR 1545040, DOI https://doi.org/10.1007/BF01187749
  • 25. John von Neumann, Über merkwürdige diskrete Eigenwerte. With E. Wigner. Phys. Zschr. vol. 30 (1929) pp. 465-467. 26. John von Neumann, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. With E. Wigner. Phys. Zschr. vol. 30 (1929) pp. 467-470. 27. John von Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik, Zschr. f. Phys. vol. 57 (1929) pp. 30-70. 28. John von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. vol. 13 (1929) pp. 73-116. 29. John von Neumann, Zusatz zur Arbeit "Zur allgemeinen..." Fund. Math. vol. 13 (1929) p. 333. Cf. [28]. 30. John von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math. Ann. vol. 102 (1929) pp. 49-131. 31. John von Neumann, Zur Algebra der Funktionaloperatoren und Theorie der normalen Operatoren, Math. Ann. vol. 102 (1929) pp. 370-427. 32. John von Neumann, Zur Theorie der unbeschränkten Matrizen, J. Reine Angew Math. vol. 161 (1929) pp. 208-236. 33. John von Neumann, Über einen Hilfssatz der Variationsrechnung, Abh. Math. Sem. Hansischen Univ. vol. 8 (1930) pp. 28-31.
  • J. von Neumann, Über Funktionen von Funktionaloperatoren, Ann. of Math. (2) 32 (1931), no. 2, 191–226 (German). MR 1502991, DOI https://doi.org/10.2307/1968185
  • 35. John von Neumann, Algebraische Repräsentanten der Funktionen "bis auf eine Menge vom Maasse Null," J. Reine Angew. Math. vol. 161 (1931) pp. 109-115. 36. John von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. vol. 104 (1931) pp. 570-578. 37. John von Neumann, Bemerkungen zu den Ausführungen von Herrn St. Lesniewski über meine Arbeit "Zur Hilbertschen Beweistheorie," Fund. Math. vol. 17 (1931) pp. 331-334.
  • George W. Mackey, von Neumann and the early days of ergodic theory, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 25–38. MR 1067749, DOI https://doi.org/10.1090/pspum/050/1067749
  • Donald S. Ornstein, von Neumann and ergodic theory, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 39–42. MR 1067750, DOI https://doi.org/10.1090/pspum/050/1067750
  • J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. (2) 33 (1932), no. 2, 294–310 (German). MR 1503053, DOI https://doi.org/10.2307/1968331
  • 41. John von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 70-82. 42. John von Neumann, Physical applications of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 263-266. 43. John von Neumann, Dynamical systems of continuous spectra. With B. O. Koopman. Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 255-263.
  • J. von Neumann, Über einen Satz von Herrn M. H. Stone, Ann. of Math. (2) 33 (1932), no. 3, 567–573 (German). MR 1503076, DOI https://doi.org/10.2307/1968535
  • J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. (2) 33 (1932), no. 3, 574–586 (German). MR 1503077, DOI https://doi.org/10.2307/1968536
  • J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. (2) 33 (1932), no. 3, 587–642 (German). MR 1503078, DOI https://doi.org/10.2307/1968537
  • J. von Neumann, Zusätze zur Arbeit “zur Operatorenmethode...”, Ann. of Math. (2) 33 (1932), no. 4, 789–791 (German). MR 1503096, DOI https://doi.org/10.2307/1968225
  • Johann von Neumann, Mathematische Grundlagen der Quantenmechanik, Dover Publications, N. Y., 1943 (German). MR 0009560
  • J. von Neumann, Die Einführung analytischer Parameter in topologischen Gruppen, Ann. of Math. (2) 34 (1933), no. 1, 170–190 (German). MR 1503104, DOI https://doi.org/10.2307/1968347
  • 49. John von Neumann, A koordinâta-mérés pontosságának határai az elektron Dirac-féle elméletében (Über die Grenzen der Koordinatenmessungs-Genauigkeit in der Diracschen Theorie des Elektrons), Mat. es Termeszettud . . . Ertesito vol. 50 (1933) pp. 366-385.
  • P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934), no. 1, 29–64. MR 1503141, DOI https://doi.org/10.2307/1968117
  • J. V. Neumann, Zum Haarschen Maßin topologischen Gruppen, Compositio Math. 1 (1935), 106–114 (German). MR 1556880
  • J. v. Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36 (1934), no. 3, 445–492. MR 1501752, DOI https://doi.org/10.1090/S0002-9947-1934-1501752-3
  • 53. John von Neumann, The Dirac equation in projective relativity. With A. H. Taub and O. Veblen. Proc. Nat. Acad. Sci. U.S.A. vol. 20 (1934) pp. 383-388.
  • John von Neumann, On complete topological spaces, Trans. Amer. Math. Soc. 37 (1935), no. 1, 1–20. MR 1501776, DOI https://doi.org/10.1090/S0002-9947-1935-1501776-7
  • S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Trans. Amer. Math. Soc. 37 (1935), no. 1, 21–50. MR 1501777, DOI https://doi.org/10.1090/S0002-9947-1935-1501777-9
  • S. Bochner and J. Von Neumann, On compact solutions of operational-differential equations. I, Ann. of Math. (2) 36 (1935), no. 1, 255–291. MR 1503222, DOI https://doi.org/10.2307/1968678
  • 57. John von Neumann, Charakterisierung des Spektrums eines Integraloperators. Actualités Scientifiques et Industrielles Series, 229. Exposés Math, publiés à la mémoire de J. Herbrand, no. 13, Paris, 1935, 20 pp.
  • Michael Stöltzner, Bell, Bohm, and von Neumann: some philosophical inequalities concerning no-go theorems and the axiomatic method, Non-locality and modality (Cracow, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 64, Kluwer Acad. Publ., Dordrecht, 2002, pp. 37–58. MR 2031968
  • P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719–723. MR 1503247, DOI https://doi.org/10.2307/1968653
  • 60. John von Neumann, The determination of representative elements in the residual classes of a Boolean algebra. With M. H. Stone. Fund. Math. vol. 25 (1935) pp. 353-378.
  • J. Von Neumann, On a certain topology for rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 111–115. MR 1503274, DOI https://doi.org/10.2307/1968692
  • F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI https://doi.org/10.2307/1968693
  • 63. John von Neumann, On an algebraic generalization of the quantum mechanical formalism (Part I). Rec. Math (Mat. Sbornik) N. S. vol. 1 (1936) pp. 415-484. 64. John von Neumann, The uniqueness of Haar’s measure, Rec. Math (Mat. Sbornik) N. S. vol. 1 (1936) pp. 721-734.
  • Garrett Birkhoff and John von Neumann, The logic of quantum mechanics, Ann. of Math. (2) 37 (1936), no. 4, 823–843. MR 1503312, DOI https://doi.org/10.2307/1968621
  • 66. John von Neumann, Continuous geometry, Proc. Nat. Acad. Sci. U.S.A. vol. 22 (1936) pp. 92-100. 67. John von Neumann, Examples of continuous geometries, Proc. Nat. Acad. Sci. U.S.A. vol. 22 (1936) pp. 101-108. 68. John von Neumann, On regular rings. Proc. Nat. Acad. Sci. U.S.A. vol. 22 (1936) pp. 707-713.
  • C. Kuratowski and J. Von Neumann, On some analytic sets defined by transfinite induction, Ann. of Math. (2) 38 (1937), no. 2, 521–525. MR 1503350, DOI https://doi.org/10.2307/1968568
  • F. J. Murray and J. von Neumann, On rings of operators. II, Trans. Amer. Math. Soc. 41 (1937), no. 2, 208–248. MR 1501899, DOI https://doi.org/10.1090/S0002-9947-1937-1501899-4
  • 71. John von Neumann, Some matrix-inequalities and metrization of matrix-space. Tomck. Univ. Rev. vol. 1 (1937) pp. 286-300. 72. John von Neumann, Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Erg. eines Math. Coll., Vienna, edited by K. Menger, vol. 8, 1937, pp. 73-83. 73. John von Neumann, Algebraic theory of continuous geometries, Proc. Nat. Acad. Sci. U.S.A. vol. 23 (1937) pp. 16-22.
  • Jeffrey Bub, von Neumann’s theory of quantum measurement, John von Neumann and the foundations of quantum physics (Budapest, 1999) Vienna Circ. Inst. Yearb., vol. 8, Kluwer Acad. Publ., Dordrecht, 2001, pp. 63–74. MR 2042741
  • J. von Neumann, On infinite direct products, Compositio Math. 6 (1939), 1–77. MR 1557013
  • J. v. Neumann and I. Halperin, On the transitivity of perspective mappings, Ann. of Math. (2) 41 (1940), 87–93. MR 653, DOI https://doi.org/10.2307/1968822
  • 77. John von Neumann, On rings of operators, III, Ann. of Math. vol. 41 (1940) pp. 94-161.
  • J. v. Neumann and E. P. Wigner, Minimally almost periodic groups, Ann. of Math. (2) 41 (1940), 746–750. MR 2891, DOI https://doi.org/10.2307/1968853
  • 78a. John von Neumann, The estimation of the probable error from succesive differences. With R. H. Kent. Aberdeen Proving Ground, Md., Report No. 175, 1940, 19 pp.
  • J. von Neumann, R. H. Kent, H. R. Bellinson, and B. I. Hart, The mean square successive difference, Ann. Math. Statistics 12 (1941), 153–162. MR 4436, DOI https://doi.org/10.1214/aoms/1177731746
  • J. von Neumann and I. J. Schoenberg, Fourier integrals and metric geometry, Trans. Amer. Math. Soc. 50 (1941), 226–251. MR 4644, DOI https://doi.org/10.1090/S0002-9947-1941-0004644-8
  • John von Neumann, Distribution of the ratio of the mean square successive difference to the variance, Ann. Math. Statistics 12 (1941), 367–395. MR 6656, DOI https://doi.org/10.1214/aoms/1177731677
  • John von Neumann, A further remark concerning the distribution of the ratio of the mean square successive difference to the variance, Ann. Math. Statistics 13 (1942), 86–88. MR 6657, DOI https://doi.org/10.1214/aoms/1177731645
  • Paul R. Halmos and John von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332–350. MR 6617, DOI https://doi.org/10.2307/1968872
  • S. Chandrasekhar and J. von Neumann, The statistics of the gravitational field arising from a random distribution of stars. I. The speed of fluctuations, Astrophys. J. 95 (1942), 489–531. MR 6280, DOI https://doi.org/10.1086/144420
  • B. I. Hart, Tabulation of the probabilities for the ratio of the mean square successive difference to the variance, Ann. Math. Statistics 13 (1942), 207–214. MR 6658, DOI https://doi.org/10.1214/aoms/1177731606
  • John von Neumann, Approximative properties of matrices of high finite order, Portugal. Math. 3 (1942), 1–62. MR 6137
  • F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI https://doi.org/10.2307/1969107
  • S. Chandrasekhar and J. von Neumann, The statistics of the gravitational field arising from a random distribution of stars. II. The speed of fluctuations; dynamical friction; spatial correlations, Astrophys. J. 97 (1943), 1–27. MR 8000, DOI https://doi.org/10.1086/144487
  • John von Neumann, On some algebraical properties of operator rings, Ann. of Math. (2) 44 (1943), 709–715. MR 9095, DOI https://doi.org/10.2307/1969106
  • John von Neumann, A certain zero-sum two-person game equivalent to the optimal assignment problem, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 5–12. MR 0054920
  • 90a. John von Neumann, A model of general economic equilibrium, Rev. Economic Studies, vol. 13 (1), (1945-1946) pp. 1-9. 91. John von Neumann, Solution of linear systems of high order. With V. Bargmann and D. Montgomery. Report prepared for Navy BuOrd under Contract Nord-9596-25, Oct. 1946, 85 pp.
  • Arthur W. Burks, Herman H. Goldstine, and John von Neumann, Preliminary Discussion of the Logical Design of an Electronic Computing Instrument, Institute for Advanced Study, Princeton, N. J., 1947. 2d ed. MR 0022442
  • Robert Schatten and John von Neumann, The cross-space of linear transformations. II, Ann. of Math. (2) 47 (1946), 608–630. MR 16533, DOI https://doi.org/10.2307/1969096
  • Robert Schatten and John von Neumann, The cross-space of linear transformations. III, Ann. of Math. (2) 49 (1948), 557–582. MR 27127, DOI https://doi.org/10.2307/1969045
  • John von Neumann, The mathematician, The Works of the Mind, The University of Chicago Press, Chicago, Ill., 1947, pp. 180–196. Edited for the Committee on Social Thought by Robert B. Heywood. MR 0021929
  • John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 24235, DOI https://doi.org/10.1090/S0002-9904-1947-08909-6
  • Herman H. Goldstine and John von Neumann, Planning and Coding of Problems for an Electronic Computing Instrument, Institute for Advanced Study, Princeton, N. J., 1947. MR 0022443
  • 96. John von Neumann, Planning and coding of problems for an electronic computing instrument. Part II, Vol. II. With H. H. Goldstine. Report prepared for U. S. Army Ord. Dept. under Contract W-36-034-ORD-7481, 1948, 68 pp. 97. John von Neumann, Planning and coding of problems for an electronic computing instrument. Part II, Vol. III. With H. H. Goldstine. Report prepared for U. S. Army Ord. Dept. under Contract W-36-034-ORD-7481, 1948, 23 pp. 98. John von Neumann, On the theory of stationary detonation waves, File No. X122, September 20, 1948, BRL, Aberdeen Proving Ground, Md., 26 pp.
  • John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 29101, DOI https://doi.org/10.2307/1969463
  • J. Von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21 (1950), 232–237. MR 37613
  • 101. John von Neumann, Functional Operators–Vol. I: Measures and Integrals, Ann. of Math. Studies, no. 21, 261 pp.; Vol. II: The geometry of orthogonal spaces, Ann. of Math. Studies, no. 22, 107 pp., Princeton University Press, 1950.
  • G. W. Brown and J. von Neumann, Solutions of games by differential equations, Contributions to the Theory of Games, Annals of Mathematics Studies, no. 24, Princeton University Press, Princeton, N. J., 1950, pp. 73–79. MR 0039220
  • 103. John von Neumann, Statistical treatment of values of first 2000 decimal digits of e and of Pi calculated on the ENIAC. With N. C. Metropolis and G. Reitwiesner. Mathematical Tables and Other Aids to Computation vol. 4 (1940) pp. 109-111.
  • J. G. Charney, R. Fjörtoft, and J. von Neumann, Numerical integration of the barotropic vorticity equation, Tellus 2 (1950), 237–254. MR 42799, DOI https://doi.org/10.3402/tellusa.v2i4.8607
  • I. E. Segal and John von Neumann, A theorem on unitary representations of semisimple Lie groups, Ann. of Math. (2) 52 (1950), 509–517. MR 37309, DOI https://doi.org/10.2307/1969429
  • Johann von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281 (German). MR 43386, DOI https://doi.org/10.1002/mana.3210040124
  • 107. John von Neumann, The future of high-speed computing, Proc., Camp. Sem., Dec. 1949, published and copyrighted by IBM, 1951, p. 13.
  • Problems of Cosmical Aerodynamics, Proceedings of the Symposium on the Motion of Gaseous Masses of Cosmical Dimensions held at Paris, August 16–19, 1949., Central Air Documents Office, Dayton, Ohio, 1951, pp. iii+v+237. MR 0044302
  • Herman H. Goldstine and John von Neumann, Numerical inverting of matrices of high order. II, Proc. Amer. Math. Soc. 2 (1951), 188–202. MR 41539, DOI https://doi.org/10.1090/S0002-9939-1951-0041539-X
  • 110. John von Neumann, Various techniques used in connection with random digits (Chap. 13) of proceedings of symposium on "Monte Carlo Method" held June-July 1949 in Los Angeles. Nat’l. BuStandards, Applied Math. Series 12, June 11, 1951, pp. 36-38.
  • John von Neumann, The general and logical theory of automata, Cerebral Mechanisms in Behavior. The Hixon Symposium, John Wiley & Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1951, pp. 1–31; discussion, pp. 32–41. MR 0045446
  • John von Neumann, Continuous geometry, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1998. With a foreword by Israel Halperin; Reprint of the 1960 original; Princeton Paperbacks. MR 1619428
  • John von Neumann, A certain zero-sum two-person game equivalent to the optimal assignment problem, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 5–12. MR 0054920
  • D. B. Gillies, J. P. Mayberry, and J. von Neumann, Two variants of poker, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 13–50. MR 0054925
  • John von Neumann, A numerical method to determine optimum strategy, Naval Res. Logist. Quart. 1 (1954), 109–115. MR 63776, DOI https://doi.org/10.1002/nav.3800010207
  • 116. John von Neumann, The role of mathematics in the sciences and in society. Address before Assoc. of Princeton Graduate Alumni, June 16, 1954.
  • John von Neumann, A numerical method to determine optimum strategy, Naval Res. Logist. Quart. 1 (1954), 109–115. MR 63776, DOI https://doi.org/10.1002/nav.3800010207
  • 118. John von Neumann, The NORC and problems in high speed computing. Speech at first public showing of IBM Naval Ordnance Research Calculator, December 2, 1954.
  • Huzihiro Araki, Some of the legacy of John von Neumann in physics: theory of measurement, quantum logic, and von Neumann algebras in physics, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 119–136. MR 1067755, DOI https://doi.org/10.1090/pspum/050/1067755
  • 120. John von Neumann, Can we survive technology?, Fortune, June, 1955.
  • A. Devinatz, A. E. Nussbaum, and J. von Neumann, On the permutability of self-adjoint operators, Ann. of Math. (2) 62 (1955), 199–203. MR 71745, DOI https://doi.org/10.2307/1969674
  • 122. John von Neumann, Continued fraction expansion of 21/3. With Bryant Tuckerman. Mathematical Tables and Other Aids to Computation, IX, no. 49, January, 1955.
  • Herman H. Goldstine and John von Neumann, Blast wave calculation, Comm. Pure Appl. Math. 8 (1955), 327–353. MR 72635, DOI https://doi.org/10.1002/cpa.3160080207
  • J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable components, Automata studies, Annals of mathematics studies, no. 34, Princeton University Press, Princeton, N. J., 1956, pp. 43–98. MR 0077479
  • 125. John von Neumann, Impact of atomic energy on the physical and chemical sciences. Speech at M.I.T. Alumni Day Symposium. Tech. Rev., Nov. 1955, pp. 15-17. 1. J. von Neumann, Almost periodic functions in a group. I, Bull. Amer. Math. Soc. vol. 40 (1934) p. 224. 2. J. von Neumann, On complete topological spaces, Bull. Amer. Math. Soc. vol. 41 (1935) p. 35. 3. S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Bull. Amer. Math. Soc. vol. 41 (1935) p. 35. 4. J. von Neumann, Representations and ray-representations in quantum mechanics, Bull. Amer. Math. Soc. vol. 41 (1935) p. 305. 5. J. von Neumann, On the uniqueness of invariant Lebesgue measures, Bull. Amer. Math. Soc. vol. 42 (1936) p. 343. 6. I. J. Schoenberg and J. von Neumann, Fourier integrals and metric geometry, Bull. Amer. Math. Soc. vol. 42 (1936) p. 632. 7. F. J. Murray and J. von Neumann, On rings of operators. II, Bull. Amer. Math. Soc. vol. 42 (1936) p. 808. 8. I. Halperin and J. von Neumann, On the transitivity of perspective mappings in complemented modular lattices, Bull. Amer. Math. Soc. vol. 43 (1937) p. 37. 9. I. J. Schoenberg and J. von Neumann, Fourier integrals and metric geometry, II, Bull. Amer. Math. Soc. vol. 45 (1939) p. 79.
  • Paul R. Halmos and John von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332–350. MR 6617, DOI https://doi.org/10.2307/1968872
  • 11. S. M. Ulam and J. von Neumann, Random ergodic theorems, Bull. Amer. Math, soc. vol. 51 (1945) p. 660.
  • Robert Schatten and John von Neumann, The cross-space of linear transformations. II, Ann. of Math. (2) 47 (1946), 608–630. MR 16533, DOI https://doi.org/10.2307/1969096
  • P. R. Halmos, The legend of John von Neumann, Operator algebras, quantization, and noncommutative geometry, Contemp. Math., vol. 365, Amer. Math. Soc., Providence, RI, 2004, pp. 1–13. Reprinted from Amer. Math. Monthly 80 (1973), 382–394 [MR0317867]. MR 2106813, DOI https://doi.org/10.1090/conm/365/06696
  • 14. S. Ulam and J. von Neumann, On the group of homeomorphisms of the surface of the sphere, Bull. Amer. Math. Soc. vol. 53 (1947) p. 506. 15. S. Ulam and J. von Neumann, On combination of stochastic and deterministic processes, Bull. Amer. Math. Soc. vol. 53 (1947) p. 1120.
  • John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 24235, DOI https://doi.org/10.1090/S0002-9904-1947-08909-6
  • Robert Schatten and John von Neumann, The cross-space of linear transformations. III, Ann. of Math. (2) 49 (1948), 557–582. MR 27127, DOI https://doi.org/10.2307/1969045


Additional Information