Skip to Main Content

Conformal Geometry and Dynamics

Published by the American Mathematical Society since 1997, the purpose of this electronic-only journal is to provide a forum for mathematical work in related fields broadly described as conformal geometry and dynamics. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4173

The 2020 MCQ for Conformal Geometry and Dynamics is 0.49.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Area, capacity and diameter versions of Schwarz’s Lemma
HTML articles powered by AMS MathViewer

by Robert B. Burckel, Donald E. Marshall, David Minda, Pietro Poggi-Corradini and Thomas J. Ransford
Conform. Geom. Dyn. 12 (2008), 133-152
DOI: https://doi.org/10.1090/S1088-4173-08-00181-1
Published electronically: August 27, 2008

Abstract:

The now canonical proof of Schwarz’s Lemma appeared in a 1907 paper of Carathéodory, who attributed it to Erhard Schmidt. Since then, Schwarz’s Lemma has acquired considerable fame, with multiple extensions and generalizations. Much less known is that, in the same year 1907, Landau and Toeplitz obtained a similar result where the diameter of the image set takes over the role of the maximum modulus of the function. We give a new proof of this result and extend it to include bounds on the growth of the maximum modulus. We also develop a more general approach in which the size of the image is estimated in several geometric ways via notions of radius, diameter, perimeter, area, capacity, etc.
References
  • Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
  • C. Carathéodory, Sur quelques applications du théorème de Landau-Picard, C. R. Acad. Sci. Paris, 144 (1907), 1203-1206.
  • Torsten Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), no. 1-2, 154–160 (German). MR 1544458, DOI 10.1007/BF01378342
  • Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
  • Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
  • Willy Feller, Some geometric inequalities, Duke Math. J. 9 (1942), 885–892. MR 7622
  • Theodore W. Gamelin, Complex analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001. MR 1830078, DOI 10.1007/978-0-387-21607-2
  • F. W. Gehring and K. Hag, Hyperbolic geometry and disks, J. Comput. Appl. Math. 105 (1999), no. 1-2, 275–284. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). MR 1690594, DOI 10.1016/S0377-0427(99)00016-3
  • E. Landau and O. Toeplitz, Über die größte Schwankung einer analytischen Funktion in einem Kreise, Arch. der Math. und Physik (3) 11 (1907), 302-307.
  • Peter D. Lax, A short path to the shortest path, Amer. Math. Monthly 102 (1995), no. 2, 158–159. MR 1315595, DOI 10.2307/2975350
  • L. Lichtenstein, Neuere Entwicklung der Potentialtheorie. Konforme Abbildung, Encyklopädie der Mathematischen Wissenschaften Bd.II, 3rd Part. 1st Half, Heft 3, 181-377. B.G.Teubner (1919), Leipzig.
  • Thomas H. MacGregor, Length and area estimates for analytic functions, Michigan Math. J. 11 (1964), 317–320. MR 171003
  • David Minda and D. J. Wright, Univalence criteria and the hyperbolic metric, Rocky Mountain J. Math. 12 (1982), no. 3, 471–479. MR 672231, DOI 10.1216/RMJ-1982-12-3-471
  • G. Pólya, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf merhfach zusammenhängende Gebiete II, S.-B. Preuss. Akad. (1928), 280-282.
  • G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486, DOI 10.1515/9781400882663
  • G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions, Die Grundlehren der mathematischen Wissenschaften, Band 193, Springer-Verlag, New York-Berlin, 1972. Translated from the German by D. Aeppli. MR 0344042
  • K. A. Poukka, Über die größte Schwankung einer analytischen Funktion auf einer Kreisperipherie, Arch. der Math. und Physik (3) 12 (1907), 251-254.
  • Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
  • Reinhold Remmert, Theory of complex functions, Graduate Texts in Mathematics, vol. 122, Springer-Verlag, New York, 1991. Translated from the second German edition by Robert B. Burckel; Readings in Mathematics. MR 1084167, DOI 10.1007/978-1-4612-0939-3
Similar Articles
  • Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C80
  • Retrieve articles in all journals with MSC (2000): 30C80
Bibliographic Information
  • Robert B. Burckel
  • Affiliation: Department of Mathematics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506
  • Email: burckel@math.ksu.edu
  • Donald E. Marshall
  • Affiliation: Department of Mathematics, Box 354350 University of Washington Seattle, Washington 98195-4350
  • MR Author ID: 120295
  • Email: marshall@math.washington.edu
  • David Minda
  • Affiliation: Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio 45221-0025
  • Email: david.minda@uc.edu
  • Pietro Poggi-Corradini
  • Affiliation: Department of Mathematics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506
  • Email: pietro@math.ksu.edu
  • Thomas J. Ransford
  • Affiliation: Département de mathématiques et de statistique, Université Laval, Québec (QC), G1K 7P4, Canada
  • MR Author ID: 204108
  • Email: thomas.ransford@mat.ulaval.ca
  • Received by editor(s): July 17, 2007
  • Published electronically: August 27, 2008
  • Additional Notes: The second author was supported by NSF grant DMS 0602509.
    The fifth author was supported by grants from NSERC, FQRTN, and the Canada research chairs program.
  • © Copyright 2008 American Mathematical Society
  • Journal: Conform. Geom. Dyn. 12 (2008), 133-152
  • MSC (2000): Primary 30C80
  • DOI: https://doi.org/10.1090/S1088-4173-08-00181-1
  • MathSciNet review: 2434356