Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The atomic decomposition of Besov-Bergman-Lipschitz spaces
HTML articles powered by AMS MathViewer

by Geraldo Soares De Souza PDF
Proc. Amer. Math. Soc. 94 (1985), 682-686 Request permission

Abstract:

Let $b$ denote a special atom, $b:[ - \pi ,\pi ) \to R,\;b(t) = 1/2\pi$ or, for any interval $I{\text { in }}[ - \pi ,\pi )\;$ $b(t) = - {\left | I \right |^{ - 1/p}}\mathcal {X}R(t) + {\left | I \right |^{ - 1/p}}\mathcal {X}L(t)$ $L$ is the left half of $I$, $R$ is the right half, $\left | I \right |$ denotes the length of $I$ and $\mathcal {X}E$ the characteristic function of $E$. For $1/2 < p < \infty$, let $({b_n})$ be special atoms and $({c_n})$ a sequence of real numbers; then we define the space \[ {B^p} = \left \{ {f:[ - \pi ,\pi ) \to R;f(t) = \sum \limits _{n = 1}^\infty {{c_n}{b_n}(t),} \sum \limits _{n = 1}^\infty {\left | {{c_n}} \right | < \infty } } \right \}\]. We endow ${B^p}$ with the norm ${\left \| f \right \|_{{B^P}}} = {\text {Inf}}\sum \nolimits _{n = 1}^\infty {\left | {{c_n}} \right |}$, where the infimum is taken over all possible representations of $f$. In the early 1960s, the following spaces were introduced, now known as Besov-Bergman-Lipschitz spaces. For $0 < \alpha < 1$, $1 \leq r$, $s \leq \infty$, let \[ \Lambda (\alpha ,r,s) = \left \{ {f:[ - \pi ,\pi ) \to R,{{\left \| f \right \|}_{\Lambda (\alpha ,r,s)}} = {{\left \| f \right \|}_r} + {{\left ( {\int _{ - \pi }^\pi {\frac {{{{({{\left \| {f(x + t) - f(x)} \right \|}_r})}^s}}}{{{{\left | t \right |}^{1 + \alpha s}}}}dt} } \right )}^{1/s}} < \infty } \right \}\] where $||\;|{|_r}$ is the Lebesgue space ${L^r}$-norm. Now we write down the main theorem of this paper which is as follows. THEOREM $f \in {B^P}$ for $1 < p < \infty$ if and only if $f \in \Lambda (1 - 1/p,1,1)$. Moreover, there are absolute constants $M$ and $N$ such that \[ N{\left \| f \right \|_{{B^p}}} \leq {\left \| f \right \|_{\Lambda (1 - 1/p,1,1)}} \leq M{\left \| f \right \|_{{B^p}}}\].
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E35, 42C15
  • Retrieve articles in all journals with MSC: 46E35, 42C15
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 94 (1985), 682-686
  • MSC: Primary 46E35; Secondary 42C15
  • DOI: https://doi.org/10.1090/S0002-9939-1985-0792283-5
  • MathSciNet review: 792283