Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Finite SAGBI bases for polynomial invariants of conjugates of alternating groups
HTML articles powered by AMS MathViewer

by Manfred Göbel PDF
Math. Comp. 71 (2002), 761-765 Request permission

Abstract:

It is well-known, that the ring $\mathbb {C}[X_1,\dotsc ,X_n]^{A_n}$ of polynomial invariants of the alternating group $A_n$ has no finite SAGBI basis with respect to the lexicographical order for any number of variables $n \ge 3$. This note proves the existence of a nonsingular matrix $\delta _n \in GL(n,\mathbb {C})$ such that the ring of polynomial invariants $\mathbb {C}[X_1,\dotsc ,X_n]^{A_n^{\delta _n}}$, where $A_n^{\delta _n}$ denotes the conjugate of $A_n$ with respect to $\delta _n$, has a finite SAGBI basis for any $n \geq 3$.
References
  • K. N. Raghavan, Local-global principle for annihilation of local cohomology, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 329–331. MR 1266189, DOI 10.1090/conm/159/01513
  • Göbel, M. (1992). Reduktion $G$-symmetrischer Polynome für beliebige Permutationsgruppen $G$. Diplomarbeit. Universität Passau
  • Manfred Göbel, Computing bases for rings of permutation-invariant polynomials, J. Symbolic Comput. 19 (1995), no. 4, 285–291. MR 1339909, DOI 10.1006/jsco.1995.1017
  • Hubert Comon (ed.), Rewriting techniques and applications, Lecture Notes in Computer Science, vol. 1232, Springer-Verlag, Berlin, 1997. MR 1605520, DOI 10.1007/3-540-62950-5
  • Manfred Göbel, A constructive description of SAGBI bases for polynomial invariants of permutation groups, J. Symbolic Comput. 26 (1998), no. 3, 261–272. MR 1633927, DOI 10.1006/jsco.1998.0210
  • Manfred Göbel, The “smallest” ring of polynomial invariants of a permutation group which has no finite SAGBI bases w.r.t. any admissible order, Theoret. Comput. Sci. 225 (1999), no. 1-2, 177–184. MR 1708024, DOI 10.1016/S0304-3975(98)00340-5
  • Göbel, M, Walter, J. (1999). Bases for Polynomial Invariants of Conjugates of Permutation Groups. Journal of Algorithms 32(1), 58–61
  • Lorenzo Robbiano and Moss Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 61–87. MR 1068324, DOI 10.1007/BFb0085537
  • Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
  • Weispfenning, V. (1987). Admissible Orders and Linear Forms. ACM SIGSAM Bulletin 21/2, 16–18
Similar Articles
Additional Information
  • Manfred Göbel
  • Affiliation: Dettenbachstraße 16, 94154 Neukirchen vorm Wald, Germany
  • Email: goebel@informatik.uni-tuebingen.de
  • Received by editor(s): September 7, 1999
  • Received by editor(s) in revised form: July 19, 2000
  • Published electronically: October 25, 2001
  • © Copyright 2001 American Mathematical Society
  • Journal: Math. Comp. 71 (2002), 761-765
  • MSC (2000): Primary 13A50, 12Y05; Secondary 20B35, 14Q99
  • DOI: https://doi.org/10.1090/S0025-5718-01-01405-3
  • MathSciNet review: 1885626