Quadrics associated with a curve on a surface

Author:
V. G. Grove

Journal:
Bull. Amer. Math. Soc. **51** (1945), 281-287

DOI:
https://doi.org/10.1090/S0002-9904-1945-08335-9

MathSciNet review:
0011788

Full-text PDF

References | Additional Information

**1.**P. O. Bell,*A study of curved surfaces by means of certain associated ruled surfaces*, Trans. Amer. Math. Soc. vol. 46 (1939) pp. 389-409. MR**510****2.**E. Čech,*L' intorno d'un punto d'una superficie considerato dal punto di vista proiettiva*, Annali di Matematica (3) vol. 31 (1922) pp. 191-206.**3.**W. M. Davis,*Contributions to the general theory of conjugate nets*, Dissertation, Chicago, 1932.**4.**L. Green,*The axial quadrics of a surface*, Duke Math. J. vol. 10 (1943) pp. 557-564. MR**8929****5.**V. G. Grove,*The transformation of Čech*, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 231-234. MR**9878****6.**C. C. Hsiung,*Plane sections of certain ruled surfaces associated with a curved surface*, Duke Math. J. vol. 11 (1944) pp. 59-64. MR**9879****7.**E. P. Lane,*A treatise on projective differential geometry*, The University of Chicago Press, 1942. MR**7286****8.**E. P. Lane,*The correspondence between the tangent plane of a surface and its point of contact*, Amer. J. Math. vol. 48 (1926) pp. 204-214. MR**1506586****9.**George Wu,*Systems of quadrics associated with a point on a surface*, I, II, Duke Math. J. vol. 10 (1943) pp. 499-513, 515-530. MR**9490**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1945-08335-9