Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Derivatives of composite functions


Author: John Riordan
Journal: Bull. Amer. Math. Soc. 52 (1946), 664-667
DOI: https://doi.org/10.1090/S0002-9904-1946-08621-8
MathSciNet review: 0017784
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. T. Bell, Exponential polynomials, Ann. of Math. vol. 35 (1934) pp. 258-277. MR 1503161
  • 2. L. S. Dederick, Successive derivatives of a function of several functions, Ann. of Math. vol. 27 (1925-26) pp. 385-394.
  • 3. A. Dresden, Derivatives of composite functions, Amer. Math. Monthly vol. 50 (1943) pp. 9-12. MR 7788
  • 4. K. Menger, Algebra of analysis, Notre Dame Mathematical Lectures, No. 3, Notre Dame, Indiana, 1944. MR 11280
  • 5. I. Opatowski, Combinatoric interpretation of a formula for the nth derivative of a function of a function, Bull. Amer. Math. Soc. vol. 45 (1939) p. 944. MR 425
  • 6. O. Schlömilch, Compendium der höheren analysis, s. 4, vol. 2, Braunschweig, 1879.
  • 7. F. G. Teixeira, Sur les dérivées d'ordre quelconque, Giornale di Matematica di Battaglini vol. 18 (1880) p. 306.
  • 8. H. S. Wall, On the nth derivative of f(x), Bull. Amer. Math. Soc. vol. 44 (1938) pp. 395-397.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1946-08621-8

American Mathematical Society