Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Polynomials in topological fields


Author: Irving Kaplansky
Journal: Bull. Amer. Math. Soc. 54 (1948), 909-916
MathSciNet review: 0027269
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Artin and O. Schreier, Algebraische Konstruktion reeler Körper, Abh. Math. Sem. Hamburgischen Univ. vol. 5 (1926) pp. 83-115.
  • 2. Emil Artin and George Whaples, The theory of simple rings, Amer. J. Math. 65 (1943), 87–107. MR 0007391 (4,129c)
  • 3. N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre III. Topologie générale. Chapitres III et IV, Actual. Sci. Ind., no. 916. Hermann & Cie., Paris, 1942 (French). MR 0009103 (5,102e)
  • 4. Walter Habicht, Ein Existenzsatz über reelle definite Polynome, Comment. Math. Helv. 18 (1946), 331–348 (German). MR 0016747 (8,61f)
  • 5. N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math. (2) 46 (1945), 695–707. MR 0014083 (7,238c)
  • 6. Irving Kaplansky, Topological methods in valuation theory, Duke Math. J. 14 (1947), 527–541. MR 0022210 (9,172f)
  • 7. A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Zeit. vol. 39 (1935) pp. 269-404.
  • 8. B. L. van der Waerden, Moderne Algebra, 2d ed., Berlin, 1940, vol. 1, pp. 235-245.


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1948-09096-6
PII: S 0002-9904(1948)09096-6