Convergence of continued fractions in parabolic domains

Author:
H. S. Wall

Journal:
Bull. Amer. Math. Soc. **55** (1949), 391-394

DOI:
https://doi.org/10.1090/S0002-9904-1949-09220-0

MathSciNet review:
0028976

Full-text PDF

References | Additional Information

**1.**J. J. Dennis and H. S. Wall,*The limit-circle case for a positive definite J-fraction*, Duke Math. J. vol. 12 (1945) pp. 255-273. MR**13436****2.**E. Hellinger and H. S. Wall,*Contributions to the analytic theory of continued fractions and infinite matrices*, Ann. of Math. (2) vol. 44 (1943) pp. 103-127. MR**8102****3.**J. F. Paydon and H. S. Wall,*The continued fraction as a sequence of linear transformations*, Duke Math. J. vol. 9 (1942) pp. 360-372. MR**6386****4.**W. T. Scott and H. S. Wall,*A convergence theorem for continued fractions*, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172. MR**1320****5.**W. T. Scott and H. S. Wall,*On the convergence and divergence of continued fractions*, Amer. J. Math. vol. 69 (1947) pp. 551-561. MR**21137****6.**T. J. Stieltjes,*Recherches sur les fractions continues*, Oeuvres, vol. 2, pp. 402-566.**7.**H. S. Wall and Marion Wetzel,*Quadratic forms and convergence regions for continued fractions*, Duke Math. J. vol. 11 (1944) pp. 89-102. MR**11340****8.**E. B. Van Vleck,*On the convergence of continued fractions with complex elements*, Trans. Amer. Math. Soc. vol. 2 (1901) pp. 205-233.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1949-09220-0