Convergence of continued fractions in parabolic domains

Author:
H. S. Wall

Journal:
Bull. Amer. Math. Soc. **55** (1949), 391-394

DOI:
https://doi.org/10.1090/S0002-9904-1949-09220-0

MathSciNet review:
0028976

Full-text PDF Free Access

References | Additional Information

**1.**Joseph J. Dennis and H. S. Wall,*The limit-circle case for a positive definite 𝐽-fraction*, Duke Math. J.**12**(1945), 255–273. MR**0013436****2.**E. D. Hellinger and H. S. Wall,*Contributions to the analytic theory of continued fractions and infinite matrices*, Ann. of Math. (2)**44**(1943), 103–127. MR**0008102**, https://doi.org/10.2307/1969069**3.**J. Findlay Paydon and H. S. Wall,*The continued fraction as a sequence of linear transformations*, Duke Math. J.**9**(1942), 360–372. MR**0006386****4.**W. T. Scott and H. S. Wall,*A convergence theorem for continued fractions*, Trans. Amer. Math. Soc.**47**(1940), 155–172. MR**0001320**, https://doi.org/10.1090/S0002-9947-1940-0001320-1**5.**W. T. Scott and H. S. Wall,*On the convergence and divergence of continued fractions*, Amer. J. Math.**69**(1947), 551–561. MR**0021137**, https://doi.org/10.2307/2371883**6.**T. J. Stieltjes,*Recherches sur les fractions continues*, Oeuvres, vol. 2, pp. 402-566.**7.**H. S. Wall and Marion Wetzel,*Quadratic forms and convergence regions for continued fractions*, Duke Math. J.**11**(1944), 89–102. MR**0011340****8.**E. B. Van Vleck,*On the convergence of continued fractions with complex elements*, Trans. Amer. Math. Soc. vol. 2 (1901) pp. 205-233.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1949-09220-0