Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The geometry of Finsler spaces


Author: Herbert Busemann
Journal: Bull. Amer. Math. Soc. 56 (1950), 5-16
DOI: https://doi.org/10.1090/S0002-9904-1950-09332-X
MathSciNet review: 0033164
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. B. Riemann, Über die Hypothesen, welche der Geometrie zu Grunde liegen, Mathematische Werke, Leipzig, 1892, pp. 272-287.
  • 2. Gilbert Ames Bliss, A generalization of the notion of angle, Trans. Amer. Math. Soc. 7 (1906), no. 2, 184–196. MR 1500741, https://doi.org/10.1090/S0002-9947-1906-1500741-5
  • 3. Gilbert Ames Bliss, Generalizations of Geodesic Curvature and a Theorem of Gauss Concerning Geodesic Triangles, Amer. J. Math. 37 (1915), no. 1, 1–18. MR 1507894, https://doi.org/10.2307/2370251
  • 4. Anthony Lispenard Underhill, Invariants of the function 𝐹(𝑥,𝑦,𝑥’,𝑦’) in the calculus of variations, Trans. Amer. Math. Soc. 9 (1908), no. 3, 316–338. MR 1500816, https://doi.org/10.1090/S0002-9947-1908-1500816-2
  • 5. Georg Landsberg, Über die Krümmung in der Variationsrechnung, Math. Ann. 65 (1908), no. 3, 313–349 (German). MR 1511470, https://doi.org/10.1007/BF01456416
  • 6. P. Finsler, Ueber Kurven und Flächen in allgemeinen Räumen, Dissertation, Göttingen, 1918.
  • 7. L. Berwald, Ueber Finslersche und verwandte Räume, Comptes Rendus du deuxième congrès des mathematiciens des pays slaves, Prague, 1935, pp. 1-16.
  • 8. E. Cartan, Les espaces de Finsler, Exposées de Géométrie, vol. 2, Paris, 1934.
  • 9. H. Busemann, Spaces with non-positive curvature, Acta Math. vol. 80 (1948) pp. 259-310. MR 29531
  • 10. J. Hadamard, Les surfaces à courbures opposées et leur lignes géodésiques, J. Math. Pures Appl. (5) vol. 4 (1898) pp. 27-730.
  • 11. E. Cartan, Leçons sur la géométrie des espaces de Riemann, Paris, 1928.
  • 12. H. Busemann, Metric methods in Finsler spaces and in the foundations of geometry, Annals of Mathematics Studies, no. 8, Princeton, 1942. MR 7251
  • 13. H. Busemann, Intrinsic area, Ann. of Math. vol. 48 (1947) pp. 234-267. MR 20626
  • 14. G. Bouligand and G. Choquet, Problèmes liés à des métriques variationnelles, C. R. Acad. Sci. Paris vol. 218 (1944) pp. 696-698. MR 12444
  • 15. H. Busemann, The isoperimetric problem for Minkowski area, Amer. J. Math, vol. 71 (1949) pp. 743-762. MR 31762
  • 16. H. Busemann, A theorem on convex bodies of the Brunn-Minkowski type, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 27-31. MR 28046
  • 17. H. Minkowski, Theorie der konvexen Körper, Gesammelte Abhandlungen, vol. 2, Leipzig, 1911, pp. 131-229.
  • 18. H. Minkowski, Volumen und Oberfläche, ibid. pp. 230-276.
  • 19. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Berlin, 1934.
  • 20. A. Duschek, Ueber relative Flächentheorie, Sitzungsberichte der Akademie der Wissenschaften, Wien vol. 135 (1926) Abteilung Ha, pp. 1-8.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1950-09332-X

American Mathematical Society