IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The Riemann zeta and allied functions


Author: Sarvadaman Chowla
Journal: Bull. Amer. Math. Soc. 58 (1952), 287-305
DOI: https://doi.org/10.1090/S0002-9904-1952-09583-5
MathSciNet review: 0047693
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. C. Ankeny, E. Artin, and S. Chowla, On the class number of real quadratic fields, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 524-525. MR 43137
  • 2. N. C. Ankeny and S. Chowla, On the class number of the cyclotomic field, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 529-532 and Canadian Journal of Mathematics vol. 3 (1951) pp. 486-494. MR 31942
  • 3. N. C. Ankeny and C. A. Rogers, On a conjecture of Chowla, Ann. of Math. (2) vol. 53 (1951) pp. 541-550. MR 41160
  • 4. E. Artin, Über eine neue Art von L-Reihen, Abh. Math. Sem. Hamburgischen Univ. vol. 3 (1923) pp. 89-108.
  • 5. E. Artin, Über die Zetafunktionen gewisser algebraischer Zahlkörper, Math. Ann. 89 (1923), no. 1-2, 147–156 (German). MR 1512140, https://doi.org/10.1007/BF01448095
  • 6. P. Bateman, S. Chowla, and P. Erdös, Remarks on the size of L(1, x), Publications Mathematicae Debrecen vol. 1 (1950) pp. 165-182. MR 37322
  • 7. Herbert Bilharz, Primdivisoren mit vorgegebener Primitivwurzel, Math. Ann. 114 (1937), no. 1, 476–492 (German). MR 1513151, https://doi.org/10.1007/BF01594189
  • 8. R. Brauer, On the zeta functions of algebraic number fields, Amer. J. Math. vol. 69 (1947) pp. 243-250. MR 20597
  • 9. R. Brauer, On Artin's L-series with general group characters, Ann. of Math. vol. 48 (1947) pp. 502-514. MR 20105
  • 10. S. Chowla, Note on Dirichlet's L-functions, Acta Arithmetica vol. 1 (1935) pp. 113-114.
  • 11. S. Chowla, Improvement of a theorem of Linnik and Walfisz, Proc. London Math. Soc. (2) vol. 50 (1949) pp. 423-429. MR 27302
  • 12. S. Chowla, A new proof of a theorem of Siegel, Ann. of Math. (2) vol. 51 (1950) pp. 120-122. MR 33313
  • 13. S. Chowla, On the last entry in Gauss's Diary, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 244-246. MR 29394
  • 14. S. Chowla and A. Selberg, On Epstein's zeta function (I), Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 371-374. MR 30997
  • 15. H. Davenport, On character sums in finite fields, Acta Math. vol. 71 (1939) pp. 99-121. MR 252
  • 16. R. Dedekind, Ueber die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math. vol. 121 (1900) pp. 40-123.
  • 17. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. vol. 14 (1941) pp. 197-272. MR 5125
  • 18. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 1 (1918), no. 4, 357–376 (German). MR 1544302, https://doi.org/10.1007/BF01465095
  • 19. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51 (German). MR 1544392, https://doi.org/10.1007/BF01202991
  • 20. A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 255-266.
  • 21. A. E. Ingham, On the estimation of N(σ, T), Quart. J. Math. Oxford Ser. vol. 11 (1940) pp. 291-292. MR 3649
  • 22. A. E. Ingham, A note on the distribution of primes, Acta Arithmetics vol. 1 (1936) pp. 201-211.
  • 23. Edmund Landau, Über die Wurzeln der Zetafunktion eines algebraischen Zahlkörpers, Math. Ann. 79 (1919), no. 4, 388–401 (German). MR 1511937, https://doi.org/10.1007/BF01498417
  • 24. E. Landau, Über einige ältere Vernutungen und Behauptungen in der Primzahltheorie, Math. Zeit. vol. 1 (1918) pp. 1-24.
  • 25. J. E. Littlewood, Mathematical Notes (12): An inequality for a sum of cosines, J. London Math. Soc. vol. 12 (1947) pp. 217-221.
  • 26. W. H. Mills, A prime representing function, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 604, 1196. MR 20593
  • 27. L. J. Mordell, Thoughts on number theory, J. London Math. Soc. vol. 21 (1946) pp. 58-74. MR 18653
  • 28. Balth. van der Pol, An electro-mechanical investigation of the Riemann zeta function in the critical strip, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 976-981. MR 22712
  • 29. A. Renyi, On the large sieve of Ju. V. Linnik, Compositio Math. vol. 8 (1950) pp. 68-75. MR 34407
  • 30. J. B. Rosser, Real roots of Dirichlet L-series, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 906-913. MR 32694
  • 31. E. Landau, Real zeros of real Dirichlet L-series, unpublished.
  • 32. Karl Schaffstein, Tafel der Klassenzahlen der reellen quadratischen Zahlkörper mit Primzahldiskriminante unter 12 000 und zwischen 100 000–101 000 und 1 000 000–1 001 000, Math. Ann. 98 (1928), no. 1, 745–748 (German). MR 1512434, https://doi.org/10.1007/BF01451623
  • 33. A. Selberg, An elementary proof of the prime number theorem, Ann. of Math. (2) vol. 50 (1949) pp. 305-313. MR 29410
  • 34. A. Selberg, Contributions to the theory of Dirichlet's L-functions, Skrifter Utgitt av Det Norske Videnskaps-Akademi i Oslo. I Mat.-Naturv. Klasse 1946, No. 3. MR 22872
  • 35. A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Archiv for Mathematik og Naturvidenskab vol. 47, No. 6, pp. 1-19. MR 12624
  • 36. A. Selberg, Contributions to the theory of the Riemann zeta function, Archiv for Mathematik og Naturvidenskab vol. 48, No. 5. MR 20594
  • 37. A. Selberg, On the zeros of Riemann's zeta function, Skrifter Utgitt av Det. Norske Videnskaps-Akademi i Oslo. I Mat.-Naturv. Klasse, 1942, No. 10, pp. 1-59. MR 10712
  • 38. A. Selberg, The zeta function and the Riemann hypothesis, Comptus Rendus du Dixième Congrès des Mathématiciens Scandinaves tenu à Copenhague, 1946, pp. 26-30. MR 19676
  • 39. A. Selberg, See S. Chowla and A. Selberg (14 above).
  • 40. A. Selberg, On an elementary method in the theory of primes, Det. Kongelige Norske Videnskabers Selskabs Forhandlinger vol. 19 (1947) No. 18. MR 22871
  • 41. Carl Siegel, Neuer Beweis für die Funktionalgleichung der Dedekindschen Zetafunktion, Math. Ann. 85 (1922), no. 1, 123–128 (German). MR 1512053, https://doi.org/10.1007/BF01449610
  • 42. C. L. Siegel, Neuer Beweis für die Funktionalgleichung der Dedekindschen zeta Funktion, Nachr. Ges. Wiss. Göttingen (1922) pp. 25-31.
  • 43. C. L. Siegel, Über die Klassenzahl algebraischer Zahlkörper, Acta Arithmetica vol. 1 (1935) pp. 83-86.
  • 44. C. L. Siegel, Über Riemann's Nachlass zur analytischen Zahlentheorie, Quellen and Studien z. geschichte d. Mathematik vol. 2 (1932) pp, 45-80.
  • 45. S. Skewes, On the difference πX-Li(X), J. London Math. Soc. vol. 8 (1933) pp. 277-283.
  • 46. N. G. Tchudakoff, On the zeros of the function ζs, C. R. Acad. Sci. URSS, vol. 1 (1936) pp. 201-204.
  • 47. E. C. Titchmarsh, On van der Corput's method and the zeta function of Riemann IV, Quart. J. Math. Oxford Ser. vol. 5 (1934) pp. 90-105.
  • 48. E. C. Titchmarsh, The zeros of the Riemann zeta function, Proc. Roy. Soc. London Ser. A vol. 151 (1935) pp. 234-255.
  • 49. E. C. Titchmarsh, The zeros of the Riemann zeta function, Proc. Roy. Soc. London Ser. A vol. 157 (1936) pp. 261-263.
  • 50. E. C. Titchmarsh, On ζsand π(x), Quart. J. Math. Oxford Ser. vol. 9 (1938) pp. 97-108.
  • 51. P. Turán, On a theorem of Littlewood, J. London Math. Soc. vol. 21 (1946) pp. 268-275. MR 21568
  • 52. P. Turán, On some approximative Dirichlet polynomials in the theory of the zeta function of Riemann, Det. Kgl. Danske Videnskabernes Selskab Matematisk-Fysiske Medellelser. vol. 24 (1948) No. 17. MR 27305


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1952-09583-5

American Mathematical Society