Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Asymptotic phenomena in mathematical physics


Author: K. O. Friedrichs
Journal: Bull. Amer. Math. Soc. 61 (1955), 485-504
MathSciNet review: 0074614
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • G. G. Stokes and G. G. Stokes, On the discontinuity of arbitrary constants that appear as multipliers of semi-convergent series, Acta Math. 26 (1902), no. 1, 393–397. A letter to the editor. MR 1554970, 10.1007/BF02415503
  • G. D. Birkhoff and R. E. Langer, The boundary problems and developments associated with a system of ordinary linear differential equations of the first order, Proceedings of the American Academy of Arts and Sciences vol. 58 (1923) pp. 51-128. Reprinted in Collected mathematical papers, vol. I, pp. 347-424.[Note]
  • M, Hukuhara, Sur les propriétés asymptotiques des solutions d'un système d'équations différentielles linéaires contenant un parametre, Kyushu Imperial University, Faculty of Engineering Memoirs, vol. 8, 1936-1940, pp. 249-280.
  • H. L. Turrittin, Asymptotic expansions of solutions of systems of ordinary linear differential equations containing a parameter, Contributions to the Theory of Nonlinear Osciallations, vol. II, Princeton University Press, Princeton, 1952, pp. 81–116. MR 0050754
  • W. Wasow, Introduction to the asymptotic theory of ordinary linear differential equations, Report of the National Bureau of Standards, 1954, pp. 54-56.
  • M. H. Dulac, Points singuliers des equations différentielles, Memorial des Sciences Mathématique, no. 61, 1934.
  • Wolfgang Wasow, Singular perturbations of boundary value problems for nonlinear differential equations of the second order, Comm. Pure Appl. Math. 9 (1956), 93–113. MR 0079161
  • H. S. Tsien, The PLK method, Advances in Applied Mechanics, vol. IV, Academic Press Inc., New York, 1955.
  • Wolfgang Wasow, On the convergence of an approximation method of M. J. Lighthill, J. Rational Mech. Anal. 4 (1955), 751–767. MR 0073785
  • Norman Levinson, Perturbations of discontinuous solutions of non-linear systems of differential equations, Acta Math. 82 (1950), 71–106. MR 0035356
  • A. B. Vasil′eva, On differential equations containing small parameters, Mat. Sbornik N.S. 31(73) (1952), 587–644 (Russian). MR 0055518
  • J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. MR 0034932
  • Richard Bellman, Stability theory of differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. MR 0061235
  • V. V. Nemyckiĭ, Some problems of the qualitative theory of differential equations, Uspehi Matem. Nauk (N.S.) 9 (1954), no. 3(61), 39–56 (Russian). MR 0063502
  • Norman Levinson, The first boundary value problem for 𝜖Δ𝑢+𝐴(𝑥,𝑦)𝑢ₓ+𝐵(𝑥,𝑦)𝑢_{𝑦}+𝐶(𝑥,𝑦)𝑢=𝐷(𝑥,𝑦) for small 𝜖, Ann. of Math. (2) 51 (1950), 428–445. MR 0033433
  • P. A. Lagerstrom and J. D. Cole, Examples illustrating expansion procedures for the Navier-Stokes equations, J. Rational Mech. Anal. 4 (1955), 817–882. MR 0077329
  • R. K. Luneburg, Lecture Notes, Brown University, 1944, and New York University, 1947-1948.
  • F. G. Friedlander, Geometrical optics and Maxwell’s equations, Proc. Cambridge Philos. Soc. 43 (1947), 284–286. MR 0020461
  • F. G. Friedlander and Joseph B. Keller, Asymptotic expansions of solutions of (∇²+𝑘²)𝑢=0, Research Rep. No. EM-67, Division of Electromagnetic Research, Institute of Mathematical Sciences, New York University, 1954. MR 0065776
  • H. Reissner, Spannungen in Kugelschalen (Kuppeln), Festschrift H. Mueller, Breslau, Leipzig, 1912, pp. 181-193.
  • O. Blumenthal, Archiv der Mathematik und Physik (3) vol. 19 (1912) pp. 136-174.
  • Eric Reissner, A problem of finite bending of circular ring plates, Quart. Appl. Math. 10 (1952), 167–173. MR 0051111
  • K. O. Friedrichs and J. J. Stoker, The non-linear boundary value problem of the buckled plate, Amer. J. Math. 63 (1941), 839–888. MR 0005866
  • E. Bromberg and J. J. Stoker, Non-linear theory of curved elastic sheets, Quart. Appl. Math. 3 (1945), 246–265. MR 0013355
  • L. Prandtl, The mechanics of viscous fluids, Aerodynamic Theory, Ed. by W. F. Durand, vol. III G. (1935).
  • S. Goldstein, Modern developments in fluid dynamics, vol. I, Oxford, 1938.
  • Walter Tollmien, Laminare Grenzschichten, Naturforschung und Medizin in Deutschland, 1939–1946, Band 11. Hydro- und Aerodynamik, Verlag Chemie, Weinheim, 1953, pp. 21–53 (German). MR 0061960
  • C. C. Lin, Hydrodynamic stability, Proceedings of Symposia in Applied Mathematics, Vol. V, Wave motion and vibration theory, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954, pp. 1–18. MR 0063199
  • J. J. Stoker, Water waves, New York, Interscience
  • G. D. Birkhoff, Bull. Amer. Math. Soc. vol. 39 (1933) pp. 681-700.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1955-09976-2