Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Some problems on 3-dimensional manifolds


Author: C. D. Papakyriakopoulos
Journal: Bull. Amer. Math. Soc. 64 (1958), 317-335
DOI: https://doi.org/10.1090/S0002-9904-1958-10222-0
MathSciNet review: 0102814
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. H. Bing, Locally tame sets are tame, Ann. of Math. vol. 59 (1954) pp. 145-158. MR 61377
  • 2. R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (to appear). MR 100841
  • 3. E. J. Brody, On the Fox invariant, Dissertation, 1954, Princeton University.
  • 4. M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), no. 1, 137–168 (German). MR 1511580, https://doi.org/10.1007/BF01455155
  • 5. S. Eilenberg, Sur les courbes sans noeuds, Fund. Math. vol. 28 (1936) pp. 233-242.
  • 6. R. H. Fox, Recent development of knot theory at Princeton, Proceedings of the International Congress of Mathematicians 1950, vol. II, pp. 453-457. MR 48023
  • 7. G. Higman, A theorem on linkages, Quart. J. Math. Oxford Ser. vol. 19 (1948) pp. 117-122. MR 25154
  • 8. Ingebrigt Johansson, Über singuläre Elementarflächen und das Dehnsche Lemma, Math. Ann. 110 (1935), no. 1, 312–320 (German). MR 1512940, https://doi.org/10.1007/BF01448029
  • 9. Ingebrigt Johansson, Über singuläre Elementarflächen und das Dehnsche Lemma II, Math. Ann. 115 (1938), no. 1, 658–669 (German). MR 1513210, https://doi.org/10.1007/BF01448964
  • 10. B. v. Kerékjártó, Vorlesungen über Topologie, Berlin, Springer, 1923.
  • 11. H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math. Verein. vol. 38 (1929) pp. 248-260.
  • 12. J. W. Milnor, A unique decomposition theorem for 3-manifolds (in preparation).
  • 13. E. E. Moise, Affine structures in 3-manifolds V, Ann. of Math. vol. 56 (1952) pp. 96-114. MR 48805
  • 14. E. E. Moise, Affine structures in 3-manifolds VIII, Ann. of Math. vol. 59 (1954) pp. 159-170. MR 61822
  • 15. M. H. A. Newman and J. H. C. Whitehead, On the group of a certain linkage, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 14-21.
  • 16. C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) vol. 7 (1957) pp. 281-299. MR 87944
  • 17. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A. vol. 43 (1957) pp. 169-172. MR 82671
  • 18. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. vol. 66 (1957) pp. 1-26. MR 90053
  • 19. C. D. Papakyriakopoulos, On the ends of the fundamental groups of 3-manifolds with boundary, Comment. Math. Helv. vol. 32 (1957) pp. 85-92. MR 92970
  • 20. K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Hansischen Univ. vol. 11 (1935) pp. 102-109.
  • 21. D. E. Sanderson, Istopic deformations in 3-manifolds, Thesis, 1953, University of Wisconsin.
  • 22. H. Seifert and W, Threlfall, Lehrbuch der Topologie, Leipzig, Teubner, 1934.
  • 23. James Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), no. 1, 88–111. MR 1501673, https://doi.org/10.1090/S0002-9947-1933-1501673-5
  • 24. E. Specker, Die erste Cohomologiegruppe von Überlagerungen und Homotopie-eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv. vol. 23 (1949) pp. 303-332. MR 33520
  • 25. J. H. C. Whitehead, A certain region in euclidean 3-space, Proc. Nat. Acad. Sci. U.S.A. vol. 21 (1935) pp. 364-366.
  • 26. J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 268-279.
  • 27. J. H. C. Whitehead, On doubled knots, J. London Math. Soc. vol. 12 (1937) pp. 63-71.
  • 28. J. H. C. Whitehead, On the asphericity of regions in a 3-sphere, Fund. Math. vol. 32 (1939) pp. 149-166.
  • 29. J. H. C. Whitehead, 2-spheres in 3-manifolds, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 161-166. MR 103473
  • 30. J. H. C. Whitehead and Arnold S. Shapiro, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 174-178. MR 103474


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1958-10222-0

American Mathematical Society