Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Some theorems and conjectures in diophantine equations


Author: Serge Lang
Journal: Bull. Amer. Math. Soc. 66 (1960), 240-249
DOI: https://doi.org/10.1090/S0002-9904-1960-10440-5
MathSciNet review: 0118698
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. B. J. Birch, Homogeneous forms of odd degree in a large number of variables, Mathematika vol. 4 (1957) pp. 102-105. MR 97359
  • 2. J. W. Cassels, Arithmetic on curves of genus 1, J. Reine Angew. Math. vol. 202 (1959) pp. 52-99. MR 109136
  • 3. F. Chatelet, Méthode Galoisienne et courbes de genre 1, Ann. Univ. Lyon, vol. 9 (1946) pp. 40-49. MR 20575
  • 4. F. Chatelet, Variations sur un thème de Poincaré, Ann. Sci. École Norm. Sup. vol. 59 (1944) pp. 249-300. MR 14720
  • 5. C. Chevalley, Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg vol. 11 (1935) pp. 73-75.
  • 6. S. Lang, On quasi algebraic closure, Ann. of Math. vol. 55 (1952) pp. 373-390. MR 46388
  • 7. S. Lang, The theory of real places, Ann. of Math. vol. 57 (1953) pp. 380-391. MR 53924
  • 8. S. Lang, Algebraic groups over finite fields, Amer. J. Math. vol. 78 no. 3 (1956) pp. 555—563.
  • 9. S. Lang, Integral points on curves, to appear. MR 130219
  • 10. S. Lang and A. Néron, Rational points of abelian varieties in function fields, Amer. J. Math. vol. 81, no. 1 (1959) pp. 95-118. MR 102520
  • 11. S. Lang and J. Tate, Principal homogeneous spaces over Abelian varieties, Amer. J. Math. vol. 80, no. 3 (1958) pp. 659-684. MR 106226
  • 12. D. J. Lewis, Cubic homogeneous polynomials over p-adic number fields, Ann. of Math. vol. 56, no. 3 (1952) pp. 473-478. MR 49947
  • 13. K. Mahler, Über die rationalen Punkte auf Kurven vom Geschlecht Eins, J. Reine Angew. Math. vol. 170 (1934) pp. 168-178.
  • 14. L. J. Mordell, On the rational solutions of the indeterminate equation of the third and fourth degrees, Proc. Cambridge Philos. Soc. vol. 21 (1922) pp. 179-192.
  • 15. T. Nakayama, Cohomology of class field theory and tensor product modules, Ann. of Math. vol. 65 (1957) pp. 255-267. MR 90620
  • 16. A. Néron, Problèmes arithmétiques et géometriques rattachés à la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France vol. 80 (1952) pp. 101-166. MR 56951
  • 17. L. J. Peck, Diophantine equations in algebraic number fields, Amer. J. Math, vol. 71 (1949) pp. 387-402. MR 28896
  • 18. E. Selmer, The diophantine equation ax3+by3+cz3 = 0, Acta Math. vol. 85 (1951) pp. 203-362. MR 41871
  • 19. I. Shafarevic, Birational equivalence of elliptic curves and Exponents of elliptic curves, Doklady Akad. Nauk SSSR vol. 114 (1957) pp. 267-270 and pp. 714-716. MR 94349
  • 20. C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929) pp. 41-69.
  • 21. John Tate, Galois cohomology, Arithmetic algebraic geometry (Park City, UT, 1999) IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 465–479. MR 1857470
  • 22. A. Weil, Algebraic groups and homogeneous spaces, Amer. J. Math. vol. 77, no. 3 (1955) pp. 493-512. MR 74084
  • 23. A. Weil, L'arithmétique sur les courbes algébriques, Acta Math. vol. 52 (1928) pp. 281-315.
  • 24. A. Weil, The field of definition of a variety, Amer. J. Math. vol. 78, no. 3 (1956) pp. 509-524. MR 82726
  • 25. A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Paris, Hermann, 1948. MR 29522
  • 26. E. Witt, Theorie der quadratischen Formen in beliebigen Körper, J. Reine Angrew. Math. vol. 176 (1937) pp. 31-44.
  • 27. E. Witt, Zerlegung reeller algebraische Funktionen in Quadrate, J. Reine Angew. Math. vol. 171 (1934) pp. 4-11.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1960-10440-5

American Mathematical Society