Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Slender groups


Author: R. J. Nunke
Journal: Bull. Amer. Math. Soc. 67 (1961), 274-275
DOI: https://doi.org/10.1090/S0002-9904-1961-10582-X
MathSciNet review: 0130298
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Baer, Die Torsionsuntergruppe einer abelschen Gruppe, Math. Ann. vol. 135 (1958) pp. 219-234. MR 100024
  • 2. S. Balcerzyk, On factor groups of some subgroups of a complete direct sum of infinite cyclic groups, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. vol. 7 (1959) pp. 141-142. MR 108529
  • 3. L. Fuchs, Abelian groups, Budapest, Publishing House of the Hungarian Academy of Sciences, 1958. MR 106942
  • 4. D. K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. vol. 69 (1959) pp. 366-391. MR 104728
  • 5. J. Rotman, On a problem of Baer and a problem of Whitehead, to appear.
  • 6. E. Sasiada, Proof that every countable and reduced torsion-free Abelian group is slender, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. vol. 7 (1959) pp. 143-144. MR 106943


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1961-10582-X

American Mathematical Society