Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Slender groups


Author: R. J. Nunke
Journal: Bull. Amer. Math. Soc. 67 (1961), 274-275
MathSciNet review: 0130298
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Reinhold Baer, Die Torsionsuntergruppe einer Abelschen Gruppe, Math. Ann. 135 (1958), 219–234 (German). MR 0100024 (20 #6460)
  • 2. S. Balcerzyk, On factor groups of some subgroups of a complete direct sum of infinite cyclic groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 141–142. (unbound insert) (English, with Russian summary). MR 0108529 (21 #7245)
  • 3. L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR 0106942 (21 #5672)
  • 4. D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 0104728 (21 #3481)
  • 5. J. Rotman, On a problem of Baer and a problem of Whitehead, to appear.
  • 6. E. Sąsiada, Proof that every countable and reduced torsion-free Abelian group is slender, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 143–144 (unbound insert) (English, with Russian summary). MR 0106943 (21 #5673)


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1961-10582-X
PII: S 0002-9904(1961)10582-X