Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The maximal semilattice decomposition of a semigroup


Author: Mario Petrich
Journal: Bull. Amer. Math. Soc. 69 (1963), 342-344
DOI: https://doi.org/10.1090/S0002-9904-1963-10912-X
MathSciNet review: 0147569
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. H. Clifford, Review of [6], Math. Reviews 17 (1956), 584.
  • 2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys No. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 132791
  • 3. D. McLean, Idempotent semigroups, Amer. Math. Monthly 61 (1954), 110-113. MR 60505
  • 4. T. Tamura and N. Kimura, On decompositions of a commutative semigroup, Kōdai Math. Sem. Rep. 4 (1954), 109-112. MR 67106
  • 5. G. Thierrin, Sur quelques propriétés de certaines classes de demi-groupes, C. R. Acad. Sci. Paris 239 (1954), 1335-1337. MR 65551
  • 6. M. Yamada, On the greatest semilattice decomposition of a semigroup, Kōdai Math. Sem. Rep. 7 (1955), 59-62. MR 74428
  • 7. M. Yamada, A remark on periodic semigroups, Sci. Rep. Shimane Univ. 9 (1959), 1-5.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1963-10912-X

American Mathematical Society