Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A generalized Morse theory


Authors: R. S. Palais and S. Smale
Journal: Bull. Amer. Math. Soc. 70 (1964), 165-172
DOI: https://doi.org/10.1090/S0002-9904-1964-11062-4
MathSciNet review: 0158411
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. F. Browder, Nonlinear elliptic boundary value problems, Bull, Amer. Math. Soc. 69 (1963), 862-873. MR 156116
  • 2. J. Eells, Jr., On the geometry of function spaces, International Symposium on Algebraic Topology, pp. 303-308, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958. MR 98419
  • 3. S. Lang, Introduction to differential manifolds;Interscience, New York, 1962. MR 155257
  • 4. C. B. Morrey, Existence and differentiability theorems for variational problems for multiple integrals, Partial Differential Equations and Continuum Mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961. MR 121690
  • 5. C. B. Morrey, Multiple integral problems in the calculus of variations and related topics, Ann. Scuola Norm. Sup. Pisa 14 (1960), 1-61. MR 115117
  • 6. Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. MR 1451874
  • 7. J. Moser, On the regularity problem for elliptic and parabolic differential equations, Partial Differential Equations and Continuum Mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961. MR 123811
  • 8. L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm Sup. Pisa 13 (1959), 115-162. MR 109940


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1964-11062-4

American Mathematical Society