On the unknottedness of the fixed point set of differentiable circle group actions on spheres—P. A. Smith conjecture

Author:
Wu-Yi Hsiang

Journal:
Bull. Amer. Math. Soc. **70** (1964), 678-680

DOI:
https://doi.org/10.1090/S0002-9904-1964-11158-7

MathSciNet review:
0169238

Full-text PDF

References | Additional Information

**1.**A. Borel,*Seminar on transformation groups*, Annals of Mathematic Studies No.46, Princeton Univ. Press, Princeton, N. J., 1960. MR**116341****2.**R. H. Fox,*On knots whose points are fixed under a periodic transformation of the*3-*sphere*, Osaka Math. J. 10 (1958), 31-35. MR**131872****3.**C. H. Giffen,*Periodic sphere transformations with knotted fixed point sets*, Notices Amer. Math. Soc. 11 (1964), 341.**4.**W.-Y. Hsiang,*On the classification of SO(n) actions on simply connected π-mani-folds of dimension less than 2n*— l (to appear).**5.**B. Mazur,*Symmetric homology spheres*, Illinois J. Math. 6 (1962), 245-250. MR**140102****6.**B. Mazur,*Corrections to my paper, "Symmetric homology spheres,"*Illinois J. Math. 8 (1964), 175. MR**157379****7.**D. Montgomery and L. Zippin,*Topological transformation groups*, Interscience, New York, 1955. MR**73104****8.**P. A. Smith,*Transformation of finite period*. II, Ann. of Math. (2) 40 (1939), 690-711. MR**177****9.**J. Stallings,*On topologically unknotted spheres*, Ann. of Math. (2) 77 (1963), 490-503. MR**149458**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1964-11158-7