Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces


Author: Richard A. Hunt
Journal: Bull. Amer. Math. Soc. 70 (1964), 803-807
DOI: https://doi.org/10.1090/S0002-9904-1964-11242-8
Addendum: Bull. Amer. Math. Soc., Volume 71, Number 2 (1965), 396--396
MathSciNet review: 0169037
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Calderón, Intermediate spaces and interpolation, Studia Math. 1 (1963), 31-34. MR 147896
  • 2. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, University Press, Cambridge, 1934.
  • 3. S. G. Kreĭn and E. M. Semenov, On a space scale, Soviet Math. Dokl. 2 (1961), 706-710.
  • 4. J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. No. 19 (1964), 5-68. MR 165343
  • 5. G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55. MR 33449
  • 6. R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963), 129-142. MR 146673
  • 7. J. Peetre, Nouvelles propriétés d'espaces d'interpolation, C. R. Acad. Sci. Paris 256 (1963), 1424-1426. MR 178381
  • 8. E. M. Stein and G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284. MR 107163
  • 9. A. Zygmund, Trigonometric series, Vol. II, 2nd. ed., Cambridge Univ. Press, New York, 1959. MR 107776


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1964-11242-8

American Mathematical Society