IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Metarecursively enumerable sets and admissible ordinals


Author: Gerald E. Sacks
Journal: Bull. Amer. Math. Soc. 72 (1966), 59-64
DOI: https://doi.org/10.1090/S0002-9904-1966-11416-7
MathSciNet review: 0215707
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. C. E. Dekker, A theorem on hypersimple sets, Proc. Amer. Math. Soc. 5 (1954), 791-796. MR 63995
  • 2. G. Driscoll, Contributions to metarecursion theory, Ph.D. Thesis, Cornell University, Ithaca, N. Y., 1965.
  • 3. R. Friedberg, Two recusively enumerable sets of incomparable degrees of unsolvability, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236-238. MR 84474
  • 4. R. Friedberg, Three theorems on recursive enumeration, J. Symbolic Logic 23 (1958), 309-316. MR 109125
  • 5. S. C. Kleene, Introduction to metamathematics, Van Nostrand, New York, 1952. MR 51790
  • 6. S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals (second paper), Amer. J. Math. 77 (1955), 405-428. MR 70595
  • 7. G. Kreisel, Model-theoretic invariants: applications to recursive and hyperarithmetric operations, Theory of Models Symposium, Berkeley, Calif, (to appear). MR 199107
  • 8. G. Kreisel and G. E. Sacks, Metarecursive sets, J. Symbolic Logic, (to appear). MR 213233
  • 9. S. Kripke, Transfinite recursions on admissible ordinals I (Abstract), J. Symbolic Logic 29 (1964), 161.
  • 10. S. Kripke, Transfinite recursions on admissible ordinals II (Abstract), J. Symbolic Logic 29 (1964), 161-162.
  • 11. S. Kripke, Admissible ordinals and the analytic hierarchy, (Abstract), J. Symbolic Logic 29 (1964), 162.
  • 12. A. A. Muchnik, Negative answer to the problem of reducibility of the theory of algorithms, Dokl. Akad. Nauk SSSR 108 (1956), 144-197.
  • 13. G. E. Sacks, Post's problem, admissible ordinals, and regularity, (to appear).
  • 14. G. E. Sacks, Axioms for recursion theory, (in preparation).
  • 15. G. E. Sacks, On the degrees less than 0', Ann. of Math. 77 (1963), 211-231. MR 146078
  • 16. C. Spector, Recursive well-orderings, J. Symbolic Logic 20 (1955), 151-163. MR 74347


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1966-11416-7

American Mathematical Society