Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Representation theory of central topological groups


Authors: Siegfried Grosser and Martin Moskowitz
Journal: Bull. Amer. Math. Soc. 72 (1966), 831-837
DOI: https://doi.org/10.1090/S0002-9904-1966-11579-3
This work is cited by: Bull. Amer. Math. Soc., Volume 72, Number 5 (1966), 826--830
MathSciNet review: 0194555
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. P. Cartier, Séminaire Sophus Lie, 1954/55-1955/56.
  • 2. A. H. Clifford, Representations induced on an invariant subgroup, Ann. of Math. 38 (1937).
  • 3. C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 144979
  • 4. R. Godement, Analyse harmonique dans les groupes centraux, I. Fonctions centrales et caractères, C. R. Acad. Sci. Paris, 225 (1947), 19-21. MR 21000
  • 5. R. Godement, Review of: F. I. Mautner, Infinite-dimensional representations of certain groups, Math. Rev. 12 (1951), p. 588.
  • 6. R. Godement, Memoire sur la théorie des caractères dans les groupes localment compacts unimodularies, J. Math. Pures Appl. 30 (1951), 1-110. MR 41857
  • 7. S. Grosser and M. Moskowitz, On central topological groups, Bull. Amer. Math. Soc. 72 (1966), 826-830. MR 194554
  • 8. G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, 1965. MR 207883
  • 9. I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree, Canad. J. Math. 16 (1964). MR 167539
  • 10. I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949). MR 28317
  • 11. L. Loomis, Abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 54173
  • 12. F. I. Mautner, Infinite-dimensional representations of certain groups, Proc. Amer. Math. Soc. 1 (1949), 582-584. MR 39728
  • 13. S. Murakami, Remarks on the structure of maximally almost periodic groups, Osaka Math. J. 2 (1950), 119-129. MR 41860
  • 14. L. Nachbin, On the finite-dimensionality of every irreducible unitary representation of a compact group, Proc. Amer. Math. Soc. 12 (1961), 11-12. MR 123197
  • 15. M. A. Naimark, Normed rings, Noordhoff N.V.-Groningen, 1959. MR 110956
  • 16. L. Pontrjagin, Topological groups, Princeton Univ. Press, Princeton, N. J., 1939.
  • 17. I. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69-105. MR 19617
  • 18. S. Takahashi, A duality theorem for representable locally compact groups with compact commutator subgroup, Tôhoku Math. J. (2)4 (1952), 115-121. MR 53947
  • 19. B. L. van der Waerden, Modern algebra, vol. II, F. Unger, New York, 1953.
  • 20. A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann et Cie, Paris, 1953.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1966-11579-3

American Mathematical Society