On a system of nonlinear partial differential equations arising in mathematical economics

Authors:
Melvyn S. Berger and Norman G. Meyers

Journal:
Bull. Amer. Math. Soc. **72** (1966), 954-958

DOI:
https://doi.org/10.1090/S0002-9904-1966-11600-2

MathSciNet review:
0203231

Full-text PDF

References | Additional Information

**1.**C. Goffman,*Non parametric surfaces given by linearly continuous functions*, Acta Math. 103 (1960), 271-291. MR**116090****2.**P. Hartman,*Ordinary differential equations*, Wiley, New York, 1964. MR**171038****3.**I. Herstein and J. Milnor,*An axiomatic approach to measurable utility*, Econometrica 17, (1953), 291-296. MR**61356****4.**L. Hurwicz and H. Uzawa,*The integrability conditions for demand functions*, (to appear).**5.**W. Nikliborc,*Sur les équations aux differentiables totales*, Studia Math. 1 (1929), 41-49.**6.**P. Samuelson,*The problem of integrability in utility theory*, Economica 17 (1950), 355-385. MR**43436****7.**J. Serrin,*Theory of differentiation*, (Mimeographed Lecture Notes), University of Minnesota, Minneapolis, Minn.**8.**T. Y. Thomas,*Systems of total differential equations defined over simply connected domains*, Ann. of Math. 35 (1934) 730-734. MR**1503190****9.**M. Tsuji,*On a system of total differential equations*, Japan. J. Math., 19 (1948), 383-393. MR**32889****10.**J. von Neumann and O. Morgenstern,*Theory of games and economic behavior*, Princeton Univ. Press, Princeton, N. J., 1944. MR**11937**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1966-11600-2