Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Fourier series on the ring of integers in a $p$-series field


Author: Mitchell H. Taibleson
Journal: Bull. Amer. Math. Soc. 73 (1967), 623-629
DOI: https://doi.org/10.1090/S0002-9904-1967-11801-9
MathSciNet review: 0217522
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 32833
  • 2. N. J. Fine, Cesáro sunvmability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588-591. MR 70757
  • 3. L. H. Harper, Capacities of sets and harmonic analysis on the group 2, Trans. Amer. Math. Soc. 126 (1967), 303-315. MR 206627
  • 4. K. L. Phillips, Hilbert transforms for the p-adic and p-series fields, Pacific J. Math, (to appear). MR 239471
  • 5. P. J. Sally, Jr. and M. H. Taibleson, Special functions on locally compact fields, Acta Math. 116 (1966), 279-309. MR 206349
  • 6. E. Study, Ueber eine besondere Classe von Functionen einer reellen Veränderlichen, Math. Ann. 47 (1896), no. 2-3, 298–316 (German). MR 1510906, https://doi.org/10.1007/BF01447272
  • 7. M. H. Taibleson, Harmonic analysis on n-dimensional vector spaces over local fields, I, Basic results on fractional integration, (to appear).
  • 8. N. Ja. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl. (2) 28 (1963), 1-35. MR 154042


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1967-11801-9

American Mathematical Society