Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

A nonlinear Sturm-Liouville problem


Author: Jay H. Wolkowisky
Journal: Bull. Amer. Math. Soc. 73 (1967), 634-636
MathSciNet review: 0217369
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Berger, A Sturm-Liouville theorem for non-linear elliptic partial differential equations, Ann. Scuola di Pisa 20 (1966), 543-582. MR 211299
  • 2. F. Browder, Variational methods for non-linear elliptic eigenvalue problems, Bull. Amer. Math. Soc. 71 (1965), 176-183. MR 179459
  • 3. N. Levinson, Positive eigenfunctions for Δu+λf(u)=0, Arch. Rational Mech. Anal. 11 (1962), 258-272. MR 145216
  • 4. L. Ljusternik, Sur une class d'équations différentielles non-lineaires, Mat. Sb. 44 (1937), 1143-1168.
  • 5. Z. Nehari, Characteristic values associated with a class of non-linear second order differential equations, Acta Math. 105 (1961), 141-175. MR 123775
  • 6. G. H. Pimbley, A sublinear Sturm-Liouville problem, J. Math. Mech. 11 (1962), 121-138. MR 138820
  • 7. G. H. Pimbley, A super-linear Sturm-Liouville problem, Trans. Amer. Math. Soc. 103 (1962), 229-248. MR 138821
  • 8. J. H. Wolkowisky, Existence of buckled states of circular plates, Comm. Pure Appl. Math. (3) 20 (1967), 549-560. MR 213087


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1967-11803-2