Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

$O\left({h^{2n+2-l}}\right)$ bounds on some spline interpolation errors


Author: Blair Swartz
Journal: Bull. Amer. Math. Soc. 74 (1968), 1072-1078
DOI: https://doi.org/10.1090/S0002-9904-1968-12052-X
MathSciNet review: 0236574
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and their applicationsAcademic Press, New York, 1967. MR 239327
  • 2. U. N. Subbotin, On piecewise-polynomial interpolation, Mat. Zametki 1 (1967), 63-70=Math. Notes 1 (1967), 41-45. MR 213788
  • 3. B. K. Swartz, O(h, LA-3886, Los Alamos Scientific Laboratory, Clearinghouse for Federal Scientific & Technical Information, Springfield, Va., 1968.
  • 4. G. Polya, Bemerkung zur Interpolation und zur Näherungstheorie der Balkenbiegung, Z. Angew. Math. Mech. 11 (1931), 445-449.
  • 5. I. J. Schoenberg, On Hermite-Birkhoff interpolation J. Math. Anal. Appl.16 (1966), 538-543. MR 203307
  • 6. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, Bull. Amer. Math. Soc. 73 (1967), 438-442. MR 210325
  • 7. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer. Anal. 4 (1967), 433-445. MR 221756
  • 8. M. Abramowitz and I. A. Stegun (editors), Handbook of mathematical functions with formulas, graphs, and mathematical tables, reprint, National Bureau ofStandards, Applied Math. Series No. 55, U. S. Government Printing Office, Washington, D. C, 1965. MR 177136
  • 9. D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer.Math. Monthly 47 (1940), 533-538. MR 2378


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1968-12052-X

American Mathematical Society