A maximum principle for optimal control problems with functional differential systems

Author:
H. T. Banks

Journal:
Bull. Amer. Math. Soc. **75** (1969), 158-161

MathSciNet review:
0253114

Full-text PDF

References | Additional Information

**1.**H. T. Banks,*Necessary conditions for control problems with variable time lags*, SIAM J. Control**6**(1968), 9–47. MR**0231007****2.**H. T. Banks,*Variational problems involving functional differential equations*, SIAM J. Control**7**(1969), 1–17. MR**0248589****3.**Kenneth L. Cooke,*Functional-differential equations: Some models and perturbation problems*, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965) Academic Press, New York, 1967, pp. 167–183. MR**0222409****4.**R. V. Gamkrelidze,*On some extremal problems in the theory of differential equations with applications to the theory of optimal control*, J. Soc. Indust. Appl. Math. Ser. A Control**3**(1965), 106–128. MR**0192937****5.**E. B. Lee,*Geometric theory of linear controlled systems*, Mathematical systems theory and economics, I, II (Proc. Internat. Summer School, Varenna, 1967) Springer, Berlin, 1969, pp. 347–354. Lecture Notes in Operations Research and Mathematical Economics, Vols. 11, 12. MR**0324516****6.**E. B. Lee,*Variational problems for systems having delay in the control action.*, IEEE Trans. Automatic Control**AC-13**(1968), 697–699. MR**0274137****7.**J. J. Levin and J. A. Nohel,*A system of nonlinear integrodifferential equations*, Michigan Math. J.**13**(1966), 257–270. MR**0203421**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1969-12188-9