Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Classification of the simple separable real $L^*$-algebras


Author: Ignacio Unsain
Journal: Bull. Amer. Math. Soc. 77 (1971), 462-466
MSC (1970): Primary 22E65; Secondary 17B65
DOI: https://doi.org/10.1090/S0002-9904-1971-12740-4
MathSciNet review: 0274541
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. V. K Balachandran, The Weyl group of an L, 157-165. MR 28 #4374. MR 161165
  • 2. V. K Balachandran, Regular elements of L, Math. Z. 93 (1966), 161-163. MR 33 #2689. MR 194479
  • 3. V. K Balachandran, Simple systems of roots in L, Trans. Amer. Math. Soc. 130 (1968), 513-524. MR 38 #199. MR 231871
  • 4. V. K Balachandran, Simple L, Math. Ann. 180 (1969), 205-219. MR 39 #4684. MR 243362
  • 5. V. K. Balachandran and P. R. Parthasarathy, Cartan subalgebras of an L, Math. Ann. 166 (1966), 300-301. MR 34 #3348. MR 203498
  • 6. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 117523
  • 7. S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 145455
  • 8. N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345. MR 143793
  • 9. S. Murakami, On the Automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan 4 (1952), 103-133. MR 14, 531. MR 51829
  • 10. S. Murakami, Sur la classification des algèbres de Lie réelles et simples, Osaka University, Osaka, Japan (mimeographed notes).
  • 11. J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80. MR 22 #8352. MR 117575
  • 12. J. R. Schue, Cartan decompositions for L, Trans. Amer. Math. Soc. 98 (1961), 334-349. MR 24 #3242. MR 133408
  • 13. F. Gantmacher, Canonical representation of automorphisms of a complex semisimple Lie group, Mat. Sb. 5 (47) (1939), 101-146. MR 1, 163. MR 998
  • 14. F. Gantmacher, On the classification of real simple Lie groups, Mat. Sb. 5 (47) (1939), 217-249. MR 2, 5. MR 2141

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 22E65, 17B65

Retrieve articles in all journals with MSC (1970): 22E65, 17B65


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1971-12740-4

American Mathematical Society