Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Finite simple groups of low 2-rank and the families $G_2 \left( q \right),\,D_4^2 \left( q \right),\,q$ odd


Authors: Daniel Gorenstein and Koichiro Harada
Journal: Bull. Amer. Math. Soc. 77 (1971), 829-862
MSC (1970): Primary 20D05, 20-02; Secondary 20D20
DOI: https://doi.org/10.1090/S0002-9904-1971-12794-5
MathSciNet review: 0306301
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. H. Conway, A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc. 1 (1969), 79-88. MR 40 #1470. MR 248216
  • 2. M. Hall, Jr., A search for simple groups of order less than one million(to appear). MR 285603
  • 3. D. Higman and C. Sims, A simple group of order 44,352,000, Math Z. 105 (1968), 110-113. MR 37 #2854. MR 227269
  • 4. G. Higman and J. McKay, On Janko's simple group of order 50,232,960, Bull. London Math. Soc. 1 (1969), 89-94. MR 40 #224. MR 246955
  • 5. Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147-186. MR 33 #1359. MR 193138
  • 6. Z. Janko, Some new simple groups of finite order. I, Symposia Mathematica (INDAM, Rome, 1967/68), vol. 1, Academic Press, London, 1969, pp. 25-64. MR 39 #5686. MR 244371
    6*.R. Lyons, Evidence for a new finite simple group(to appear). MR 299674

  • 7. J. McLaughlin, A simple group of order 898,128,000, Proc. Sympos. Theory of Finite Groups, Benjamin, New York, 1969, pp. 109-111. MR 242941
  • 8. C. Sims, On Lyons simple group of order 28•37•56•7•11•31•37•67 (to appear).
  • 9. T. M. Gagen, On groups with abelian Sylow 2-groups, Math. Z. 90 (1965), 268-272. MR 33 #190. MR 191963
  • 10. M. Hall, Jr. and D. Wales, The simple group of order 604,800, J. Algebra 9 (1968), 417-450. MR 39 #1544. MR 240192
  • 11. D. Parrott and S.K.Wong, On the Higman-Sims simple group of order 44,352,000, Pacific J. Math. 32 (1970), 501-516. MR 41 #1867. MR 257216
  • 12. R. G. Stanton, The Mathieu groups, Canad. J. Math. 3 (1951), 164-174. MR 12, 672. MR 40304
  • 13. S. Wong, On a new finite non-abelian simple group of Janko, Bull. Austral. Math. Soc. 1 (1969), 59-79. MR 269734
  • 14. P. Fong, A characterization of the finite simple groups ${\rm PSp}(4\,q),\,G\sb{2}\,(q),\,D\sb{4}{}\sp{2}\,(q)$. II, Nagoya Math. J. 39 (1970), 39-79. MR 288176
  • 15. P. Fong and W. Wong, A characterization of the finite simple groups ${\rm PSp}(4\,q),\,G\sb{2}\,(q),\,D\sb{4}{}\sp{2}\,(q)$. I, Nagoya Math. J. 36 (1969), 143-184. MR 41 #326. MR 255666
  • 16. M. Harris, A characterization of the simple groups ${\rm PSp}(4\,q)$, q odd (to appear).
  • 17. M. Harris, A characterization of the simple groups ${\rm PSp}(4\,q),\,G\sb{2}\,(q),\,D\sb{4}{}\sp{2}\,(q)$, qodd(to appear).
  • 18. D. Held, A characterization of the alternating groups of degrees eight and nine, J. Algebra 7 (1967), 218-237. MR 36 #1530. MR 218444
  • 19. D. Held, A characterization of some multiply transitive permutation groups. I, Illinois J. Math. 13 (1969), 224-240. MR 39 #304. MR 238944
  • 20. T. Kondo, A characterization of the alternating group of degree eleven, Illinois J. Math. 13 (1969), 528-541. MR 40 #225. MR 246956
  • 21. Z. Janko, A characterization of the Mathieu simple groups. I, II, J. Algebra 9 (1968), 1-19, 20-41. MR 37 #5284. MR 229710
  • 22. Z. Janko and S. Wong, A characterization of the Higman-Sims simple group, J. Algebra 13 (1969), 517-534. MR 41 #5486. MR 260866
  • 23. Z. Janko and S. Wong, A characterization of the McLaughlin simple group(to appear).
  • 24. K. Phan, A characterization of four-dimensional unimodular group, J. Alegbra 15 (1970), 252-279. MR 41 #3622. MR 258977
  • 25. K. Phan, A characterization of simple groups U(to appear).
  • 26. W. Wong, A characterization of the simple groups PSp (4, q), q odd, Trans. Amer. Math. Soc. 139 (1969), 1-35. MR 252504
  • 27. W. Wong, A characterization of the finite simple groups PSp, J. Algebra 12 (1969), 494-524. MR 39 #2868. MR 241528
  • 28. R. Brauer, A characterization ofSz (8) (unpublished).
  • 29. R. Brauer and P. Fong, A characterization of the Mathieu group ${\germ M}\sb{12}$, Trans. Amer. Math. Soc. 122 (1966), 18-47. MR 34 #7631. MR 207817
  • 30. D. Gorenstein and K. Harada, A characterization of Janko's two new simple groups, J. Univ. Tokyo 16 (1970), 331-406. MR 283075
  • 31. D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of Type A, n=8, 9, 10, 11, Math Z. 111 (1970), 207-238. MR 276348
  • 32. D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of type Â, n=8, 9, 10, 11, J. Algebra (to appear). MR 285599
  • 33. D. Gorenstein and K. Harada, Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups, Ann. of Math, (to appear). MR 313384
  • 34. D. Gorenstein and K. Harada, Finite groups with Sylow 2-subgroups of type PSp (4, q), q odd, J. Math. Soc. Japan (to appear). MR 338162
  • 35. H. Bender, On groups with abelian Sylow 2-subgroups, Math. Z. 111 (1970), 164-176. MR 288180
  • 36. Z. Janko and J. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274-292. MR 34 #1386. MR 201504
  • 37. J. Thompson, Toward a characterization of $E\sb{2}\sp{*} (q)$, J. Algebra 7 (1967), 406-414. MR 36 #6496. MR 223448
  • 38. H. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89. MR 33 #5752. MR 197587
  • 39. J. H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. (2) 89 (1969), 405-514. MR 40 #2749. MR 249504
  • 40. H. Bender, Doubly transitive groups with no involution fixing two points(to appear).
  • 41. H. Bender, Finite groups having a strongly embedded subgroup(to appear).
  • 42. Z. Janko, Nonsolvable finite groups all of whose 2-local subgroups are solvable(to appear).
  • 43. Z. Janko and J. Thompson, On finite simple groups whose Sylow 2-subgroups have no elementary abelian subgroup of order 8, Math. Z. 113 (1970), 385-397. MR 283076
  • 44. A. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3 and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc. 150 (1970), 345-408. MR 276324
  • 45. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437, §§ 1-6; Pacific J. Math. 33 (1970), 451-539, §§ 7-9 (balance to appear). MR 37 #6367. MR 230809
  • 46. G. Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math. 20 (1968), 1101-1135. MR 37 #6365. MR 230807
  • 47. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. MR 34 #2681. MR 202822
  • 48. D. Goldschmidt, Solvable signalizer functors on finite groups(to appear). MR 297861
  • 49. D. Goldschmidt, 2-signalizer functors on finite groups(to appear). MR 323904
  • 50. D. Gorenstein, On the centralizers of involutions in finite groups. I, II, J. Algebra 11 (1969), 243-277; ibid. 14 (1970), 350-372. MR 39 #1540; MR 41 #317. MR 240188
  • 51. D. Gorenstein, The flatness of signalizer functors on finite groups, J. Algebra 13 (1969), 509-512. MR 40 #4352. MR 251121
  • 52. D. Gorenstein, On finite simple groups of characteristic 2 type, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 5-13, MR 41 #5484. MR 260864
  • 53. D. Gorenstein, Centralizers of involutions in simple groups, Lecture Notes, Oxford University Group Theory Conference (to appear).
  • 54. D. Gorenstein and J. Walter, Centralizers of involutions in balanced groups, J. Algebra (to appear). MR 292927
  • 55. J. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261. MR 284499
  • 56. J. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math, (to appear). MR 401902
  • 57. R. Brauer, Some applications of the theory of blocks of characters of finite groups, II, J. Algebra 1 (1964), 307-334 MR 30 #4836. MR 174636
  • 58. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759. MR 22 #731. MR 109846
  • 59. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538. MR 166261
  • 60. D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229. MR 231903

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 20D05, 20-02, 20D20

Retrieve articles in all journals with MSC (1970): 20D05, 20-02, 20D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1971-12794-5

American Mathematical Society