Holomorphic mappings: Survey of some results and discussion of open problems

Author:
Phillip A. Griffiths

Journal:
Bull. Amer. Math. Soc. **78** (1972), 374-382

DOI:
https://doi.org/10.1090/S0002-9904-1972-12905-7

MathSciNet review:
0294718

Full-text PDF

References | Additional Information

**1.**S. S. Chern,*Complex manifolds without potential theory*, Van Nostrand Math. Studies, no. 15, Van Nostrand, Princeton, N.J., 1967. MR 37 #940. MR**225346****2.**R. Nevanlinna,*Analytic functions*, Springer-Verlag, Berlin and New York, 1970. MR**279280****3.**H. Wu,*The equidistribution theory of holomorphic curves*, Princeton Univ. Press, Princeton, N.J., 1970. MR**273070****4.**W. Stoll,*Value distribution of holomorphic maps into compact complex manifolds*, Lecture Notes in Math., no. 135, Springer-Verlag, Berlin and New York, 1970. MR**267138****5.**M. Green,*Holomorphic maps into complex projective space omitting hyperplanes*, Trans. Amer. Math. Soc. (to appear). (Preprints available from Princeton University, Princeton, N.J.) MR**308433****6.**J. Carlson,*Some degeneracy theorems for entire functions with values in an algebraic variety*, Trans. Amer. Math. Soc. (to appear). (Preprints available from Princeton University, Princeton, N.J.) MR**296356****7.**H. Wu,*Remarks on the first main theorem of equidistribution theory*. I, II, III, J. Differential Geometry 2 (1968), 197-202; ibid. 3 (1969), 83-94, 369-384.**8.**J. Carlson and P. Griffiths,*A defect relation for equidimensional holomorphic mappings between algebraic varieties*, Ann. of Math. (Notes available from Princeton University, Princeton, N.J.)

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1972-12905-7