Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Structurally stable diffeomorphisms are dense


Author: Michael Shub
Journal: Bull. Amer. Math. Soc. 78 (1972), 817-818
MSC (1970): Primary 58F10
DOI: https://doi.org/10.1090/S0002-9904-1972-13047-7
MathSciNet review: 0307278
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291. MR 175106
  • 2. J. R. Munkres, Elementary differential topology. Ann. of Math. Studies, no. 54, Princeton Univ. Press, Princeton, N. J., 1963; rev. ed., 1966. MR 29 #623; 33 #6637. MR 163320
  • 3. Z. Nitecki, On semi-stability for diffeomorphisms, Invent. Math. 14 (1971), 83-123. MR 293671
  • 4. M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120. MR 26 #426. MR 142859
  • 5. S. Smale, Structurally stable systems are not dense, Amer. J. Math. 88 (1966), 491-496. MR 33 #4911. MR 196725
  • 6. S. Smale, Stability and isotopy in discrete dynamical systems, Proc. Internat. Sympos. on Dynamical Systems (Salvador, Brazil, 1971) (to appear). MR 339222

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 58F10

Retrieve articles in all journals with MSC (1970): 58F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1972-13047-7

American Mathematical Society