Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Self-orthogonal latin squares of all orders $n \ne 2,3,6$


Authors: R. K. Brayton, Donald Coppersmith and A. J. Hoffman
Journal: Bull. Amer. Math. Soc. 80 (1974), 116-118
MSC (1970): Primary 05B15
DOI: https://doi.org/10.1090/S0002-9904-1974-13379-3
MathSciNet review: 0327544
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. C. Bose, E. T. Parker and S. Shrikhande, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12 (1960), 189-203. MR 23 #A69. MR 122729
  • 2. R. C. Bose and S. Shrikhande, On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler, Trans. Amer. Math. Soc. 95 (1960), 191-209. MR 22 #2557. MR 111695
  • 3. D. J. Crampin and A. J. W. Hilton, The spectrum of latin squares orthogonal to their transposes (manuscript).
  • 4. A. L. Dulmage, D. M. Johnson, and N. S. Mendelsohn, Orthomorphisms of groups and orthogonal Latin squares I, Canad. J. Math. 13 (1961), 356-372. MR 124229
  • 5. H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Stat. 32 (1961), 361-386. MR 29 #4161. MR 166888
  • 6. A. Hedayat, An application of sum composition: a self orthogonal latin square of order ten, J. Combinatorial Theory, Series A 14 (1973), 256-260. MR 321758
  • 7. J. D. Horton, Variations on a theme by Moore, Proceedings of the Louisiana Conference on Graph Theory, Combinatorics and Computing, Louisiana State University, Baton Rouge, March 1-5, 1970. MR 309759
  • 8. C. C. Lindner, The generalized singular direct product for quasigroups, Canad. Math. Bull. 14 (1971), 61-63. MR 45 #435. MR 291341
  • 9. C. C. Lindner, Construction of quasigroups satisfying the identity x(xy)=yx, Canad. Math. Bull. 14 (1971), 57-59. MR 45 #434. MR 291340
  • 10. C. C. Lindner, Application of the singular direct product to constructing various types of orthogonal latin squares, Memphis State University Combinatorial Conference, 1972.
  • 11. John Melian (oral communications).
  • 12. N. S. Mendelsohn, Combinatorial designs as models of universal algebras, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), Academic Press, New York, 1969, pp. 123-132. MR 41 #85. MR 255423
  • 13. N. S. Mendelsohn, Latin squares orthogonal to their transposes, J. Combinatorial Theory Ser. A. 11 (1971), 187-189. MR 45 #88. MR 290994
  • 14. R. C. Mullin and E. Nemeth, A construction for self orthogonal latin squares form certain Room squares, Proc. Louisiana Conf. on Graph Theory, Combinatorics and Computing (Louisiana State Univ., Baton Rouge, La., 1970), Louisiana State Univ., Baton Rouge, La., 1970, pp. 213-226. MR 42 #2957. MR 268058
  • 15. E. Nemeth, Study of Room squares, Ph.D. Thesis, University of Waterloo, Ontario
  • 16. E. Parker, Construction of some sets of mutually orthogonal Latin squares, Proc. Amer. Math. Soc. 10 (1959), 946-949. MR 22 #674. MR 109789
  • 17. A. Sade, Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens, Ann. Soc. Sci. Bruxelles, Sér. I, 74 (1960), 91-99. MR 25 #4017. MR 140599
  • 18. A. Sade, Une nouvelle construction des quasigroupes orthogonaux à leur conjoint, Notices Amer. Math. Soc. 19 (1972), 434. Abstract # 72T-A105.
  • 19. S. K. Stein, On the foundations of quasigroups, Trans. Amer. Math. Soc. 85 (1957), 228-256. MR 20 #922. MR 94404
  • 20. R. M. Wilson, An existence theory for pairwise balanced designs, I, II, J. Combinatorial Theory Ser. A. 13 (1972), 220-273. MR 304203

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 05B15

Retrieve articles in all journals with MSC (1970): 05B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13379-3

American Mathematical Society