Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Actions of reductive groups on regular rings and Cohen-Macaulay rings


Authors: Melvin Hochster and Joel L. Roberts
Journal: Bull. Amer. Math. Soc. 80 (1974), 281-284
MSC (1970): Primary 14M05, 20G05, 14B15, 13D05; Secondary 13H05, 13H10
MathSciNet review: 0330157
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
  • 2. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 0304376
  • 3. M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. Algebra 25 (1973), 40–57. MR 0314833
  • 4. M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. (3) 29 (1974), 55–76. MR 0374118
  • 5. M. Hochster and John A. Eagon, A class of perfect determinantal ideals, Bull. Amer. Math. Soc. 76 (1970), 1026–1029. MR 0266912, 10.1090/S0002-9904-1970-12543-5
  • 6. M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 0302643
  • 7. Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 0347810
  • 8. Ernst Kunz, Characterizations of regular local rings for characteristic 𝑝, Amer. J. Math. 91 (1969), 772–784. MR 0252389
  • 9. R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Thesis, University of Minnesota, Minneapolis, Minn., 1971.
  • 10. Dan Laksov, The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math. 129 (1972), no. 1-2, 1–9. MR 0382297
  • 11. C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. (N.S.) 36 (1972), 143–171. MR 0330177
  • 12. Masayoshi Nagata, Complete reducibility of rational representations of a matric group., J. Math. Kyoto Univ. 1 (1961/1962), 87–99. MR 0142667
  • 13. C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 0374130
  • 14. Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 14M05, 20G05, 14B15, 13D05, 13H05, 13H10

Retrieve articles in all journals with MSC (1970): 14M05, 20G05, 14B15, 13D05, 13H05, 13H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13462-2