Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Actions of reductive groups on regular rings and Cohen-Macaulay rings


Authors: Melvin Hochster and Joel L. Roberts
Journal: Bull. Amer. Math. Soc. 80 (1974), 281-284
MSC (1970): Primary 14M05, 20G05, 14B15, 13D05; Secondary 13H05, 13H10
DOI: https://doi.org/10.1090/S0002-9904-1974-13462-2
MathSciNet review: 0330157
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., vol. 146, Springer-Verlag, Berlin and New York, 1970. MR 43 #224. MR 274461
  • 2. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337. MR 304376
  • 3. M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. Algebra 25 (1973), 40-57. MR 314833
  • 4. M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. (to appear). MR 374118
  • 5. M. Hochster and J. A. Eagon, A class of perfect determinantal ideals, Bull. Amer. Math. Soc. 76 (1970), 1026-1029. MR 42 #1814. MR 266912
  • 6. M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058. MR 302643
  • 7. M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. (to appear). MR 347810
  • 8. E. Kunz, Characterization of regular local rings for characteristic p, Amer. J. Math. 91 (1969), 772-784. MR 40 #5609. MR 252389
  • 9. R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Thesis, University of Minnesota, Minneapolis, Minn., 1971.
  • 10. D. Laksov, The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math. 129 (1972), 1-9. MR 382297
  • 11. C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. 36 (1972), 143-171. MR 330177
  • 12. M. Nagata, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ. 1 (1961/62), 87-99. MR 26 #236. MR 142667
  • 13. C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Thesis, Orsay, 1971 (Série A, No. d'ordre 781), Inst. Hautes Études Sci. Publ. Math. 42 (1973), 323-395. MR 374130
  • 14. Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 14M05, 20G05, 14B15, 13D05, 13H05, 13H10

Retrieve articles in all journals with MSC (1970): 14M05, 20G05, 14B15, 13D05, 13H05, 13H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13462-2

American Mathematical Society