Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Perturbation by trace class operators


Authors: R. W. Carey and J. D. Pincus
Journal: Bull. Amer. Math. Soc. 80 (1974), 758-759
MSC (1970): Primary 47A55, 47A20
MathSciNet review: 0344919
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. K. Ahiezer and I. M. Glazman, The theory of linear operators in Hilbert space, GITTL, Moscow, 1950; German transl., Akademie-Verlag, Berlin, 1954; English transl., Ungar, New York, 1961. MR 13, 358; 16, 596; 41 #9015a.
  • 2. Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964. MR 0167578
  • 3. N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equations, Amer. J. Math. 79 (1957), 597–610. MR 0088623
  • 4. William F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559–579. MR 0190761
  • 5. R. W. Carey and J. D. Pincus, Intertwining partial isometries. II (to appear).
  • 6. R. W. Carey and J. D. Pincus, Unitary equivalence modulo the trace class for self-adjoint operators, Amer. J. Math. 98 (1976), no. 2, 481–514. MR 0420323

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 47A55, 47A20

Retrieve articles in all journals with MSC (1970): 47A55, 47A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13590-1