Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Singular invariant eigendistributions as characters


Authors: R. A. Herb and P. J. Sally Jr.
Journal: Bull. Amer. Math. Soc. 83 (1977), 252-254
MSC (1970): Primary 22E45
MathSciNet review: 0480875
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 0219665
  • 2. Harish-Chandra, Two theorems on semi-simple Lie groups, Ann. of Math. (2) 83 (1966), 74–128. MR 0194556
  • 3. R. A, Herb, Fourier inversion on semisimple Lie groups of real rank two, Thesis, Univ. of Washington, 1974.
  • 4. R. A. Herb, A uniqueness theorem for tempered invariant eigendistributions, Pacific J. Math. 67 (1976), no. 1, 203–208. MR 0486319
  • 5. T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups. III (to appear).
  • 6. A. W. Knapp, Commutativity of intertwining operators. II, Bull. Amer. Math. Soc. 82 (1976), no. 2, 271–273. MR 0407203, 10.1090/S0002-9904-1976-14019-0
  • 7. A. W. Knapp and Gregg Zuckerman, Classification of irreducible tempered representations of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2178–2180. MR 0460545
  • 8. Paul J. Sally Jr. and Garth Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973), 1–26. MR 0450461
  • 9. Wilfried Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47–144. MR 0396854
  • 10. G. Warner, Harmonic analysis on semisimple Lie groups, Vols. I, II, Springer-Verlag, Berlin and New York, 1972.
  • 11. J. A. Wolf, Unitary representations on partially holomorphic cohomology spaces, Mem. Amer. Math. Soc. No. 138 (974).
  • 12. G. Zuckerman, Tensor products of infinite-dimensional and finite-dimensional representations of semisimple Lie groups (to appear).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 22E45

Retrieve articles in all journals with MSC (1970): 22E45


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1977-14287-0