Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Quotients of $C\left[ {0,1} \right]$ with separable dual


Author: Dale E. Alspach
Journal: Bull. Amer. Math. Soc. 83 (1977), 1057-1059
MSC (1970): Primary 46E15
DOI: https://doi.org/10.1090/S0002-9904-1977-14383-8
MathSciNet review: 0626370
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Y. Benyamini, An extension theorem for separable Banach spaces (preprint). MR 482075
  • 2. A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. MR 23 #A3441. MR 126145
  • 3. A. Pełczyński, Banach spaces in which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. MR 26 #6785. MR 149295
  • 4. A. Pełczyński, On C(S) subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522. MR 38 #2578. MR 234261
  • 5. H. P. Rosenthal, On factors of C([0, 1]) with non-separable dual, Israel J. Math. 13 (1972), 361-378. MR 388063
  • 6. W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. MR 37 #3327. MR 227743
  • 7. M. Zippin, The separable extension problem, Israel J. Math, (to appear). MR 442649

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 46E15

Retrieve articles in all journals with MSC (1970): 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1977-14383-8

American Mathematical Society