Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Scattering theory for automorphic functions


Authors: Peter D. Lax and Ralph S. Phillips
Journal: Bull. Amer. Math. Soc. 2 (1980), 261-295
DOI: https://doi.org/10.1090/S0273-0979-1980-14735-7
MathSciNet review: 555264
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. D. Faddeev, The eigenfunction expansion of Laplace’s operator on the fundamental domain of a discrete group on the Lobačevskiĭ plane, Trudy Moskov. Mat. Obšč. 17 (1967), 323–350 (Russian). MR 0236768
  • 2. B. S. Pavlov and L. D. Faddeev, Scattering theory and automorphic functions, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 27 (1972), 161–193 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 6. MR 0320781
  • 3. I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
  • 4. Tomio Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York-London-Sydney, 1973. MR 0429749
  • 5. Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
  • 6. Peter D. Lax and Ralph S. Phillips, Scattering theory for automorphic functions, Princeton Univ. Press, Princeton, N.J., 1976. Annals of Mathematics Studies, No. 87. MR 0562288
  • 7. Peter D. Lax and Ralph S. Phillips, The scattering of sound waves by an obstacle, Comm. Pure Appl. Math. 30 (1977), no. 2, 195–233. MR 0442510, https://doi.org/10.1002/cpa.3160300204
  • 8. Peter D. Lax and Ralph S. Phillips, Translation representations for the solution of the non-Euclidean wave equation, Comm. Pure Appl. Math. 32 (1979), no. 5, 617–667. MR 533296, https://doi.org/10.1002/cpa.3160320503
  • 9. H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225–246. MR 0473166, https://doi.org/10.1002/cpa.3160250302
    H. P. McKean, Correction to: “Selberg’s trace formula as applied to a compact Riemann surface” (Comm. Pure Appl. Math. 25 (1972), 225–246), Comm. Pure Appl. Math. 27 (1974), 134. MR 0473167, https://doi.org/10.1002/cpa.3160270109
  • 10. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 0088511
  • 11. M. A. Semenov-Tian-Shansky, Harmonic analysis on Riemannian symmetric spaces of negative curvature and scattering theory. Math. USSR Izvestija, vol. 10 (1976), 535-563.


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1980-14735-7