Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Bifurcation and symmetry breaking in applied mathematics


Author: D. H. Sattinger
Journal: Bull. Amer. Math. Soc. 3 (1980), 779-819
MSC (1980): Primary 35B32, 35B35; Secondary 20C99, 76E15
MathSciNet review: 578374
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. F. G. Auchmuty, Bifurcating waves, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 263–278. MR 556835 (81g:35004)
  • 2. G. Nicolis and J. F. G. Auchmuty, Dissipative structures, catastrophes, and pattern formation: a bifurcation analysis, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), no. 7, 2748–2751. MR 0440204 (55 #13083)
  • 3. J. F. G. Auchmuty and G. Nicolis, Bifurcation analysis of reaction-diffusion equations. III. Chemical oscillations, Bull. Math. Biology 38 (1976), no. 4, 325–350. MR 0454358 (56 #12609)
  • 4. T. Brooke Benjamin, Applications of Leray-Schauder degree theory to problems of hydrodynamic stability, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 2, 373–392. MR 0428914 (55 #1934)
  • 5. T. B. Benjamin, Bifurcation phenomena in steady flows of a viscous fluid. I. Theory, Proc. Roy. Soc. London Ser. A 359 (1978), no. 1696, 1–26. MR 0495581 (58 #14251a)
  • 6. J. L. Birman, Symmetry changes, phase transitions and ferroelectricity, Ferrolectricity, Elsevier, New York, 1967.
  • 7. F. Busse, The stability of finite amplitude cellular convection and its relation to an extremum principle, J. Fluid Mech. 30 (1967), 625-650.
  • 8. F. Busse, Patterns of convection in spherical shells, J. Fluid Mech. 72 (1975), 67-85.
  • 9. F. H. Busse, Mathematical problems of dynamo theory, Applications of bifurcation theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976) Academic Press, New York, 1977, pp. 175–202. Publ. Math. Res. Center, No. 38. MR 0452078 (56 #10360)
  • 10. A. Chenciner and G. Iooss, Bifurcations de tores invariants, Arch. Rational Mech. Anal. 69 (1979), no. 2, 109–198 (French). MR 521266 (81c:58049), http://dx.doi.org/10.1007/BF00281175
  • 11. D. Coles, Transition in circular Couette flow, J. Fluid Mech. 21 (1965), 385-425.
  • 12. G. B. Ermentrout and J. D. Cowan, Secondary bifurcation in neuronal nets, SIAM J. Appl. Math. 39 (1980), no. 2, 323–340. MR 588504 (81k:92012), http://dx.doi.org/10.1137/0139028
  • 13. G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns, Biol. Cybernet. 34 (1979), no. 3, 137–150. MR 547511 (80g:92040), http://dx.doi.org/10.1007/BF00336965
  • 14. Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180. MR 0341212 (49 #5962)
  • 15. Michael G. Crandall and Paul H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal. 67 (1977), no. 1, 53–72. MR 0467844 (57 #7695)
  • 16. J. Dieudonné, Foundations of modern analysis, Academic Press, New York-London, 1969. Enlarged and corrected printing; Pure and Applied Mathematics, Vol. 10-I. MR 0349288 (50 #1782)
  • 17. P. R. Fenstermacher, H. L. Swinney and J. P. Gollub, Dynamical instabilities and the transition to chaotic Taylor vortex, J. Fluid Mech. 94 (1979), 103.
  • 18. Paul C. Fife, The Bénard problem for general fluid dynamical equations and remarks on the Boussinesq approximation, Indiana Univ. Math. J. 20 (1970/1971), 303–326. MR 0269176 (42 #4072)
  • 19. Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914 (80g:35001)
  • 20. J. P. Gollub and H. L. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Letters 35 (1975), 921.
  • 21. M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math. 32 (1979), no. 1, 21–98. MR 508917 (80j:58061), http://dx.doi.org/10.1002/cpa.3160320103
  • 22. John Guckenheimer, The bifurcation of quadratic functions, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 78–85. MR 556824 (81k:58046)
  • 23. Hermann Haken, Laser theory, Springer-Verlag, Berlin, 1983. Reprint. MR 694694 (85c:81056)
  • 24. M. Hénon and Y. Pomeau, Two strange attractors with a simple structure, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 29–68. Lecture Notes in Math., Vol. 565. MR 0448436 (56 #6742)
  • 25. D. Henry, Geometric theory of semilinear parabolic equations, Univ. of Kentucky Lecture Notes, 1974.
  • 26. K. Hepp and E. H. Lieb, Phase transitions in reservoir-driven open systems with applications to lasers and superconductors, Helvetica Physica Acta 46 (1973), 574-603.
  • 27. M. Herschkowitz-Kaufman and T. Erneux, The bifurcation diagram of model chemical reactions, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 296–313. MR 556837 (81c:92018)
  • 28. E. Hopf, Abzweigung liner Periodischen Lösung eines Differential Systems, Berichten der Math.-Phys. Klasse der Sächisten Akademie der Wissenschaften zu Leipzig 94 (1942), 1-22.
  • 29. Eberhard Hopf, A mathematical example displaying features of turbulence, Communications on Appl. Math. 1 (1948), 303–322. MR 0030113 (10,716a)
  • 30. G. W. Hunt, Imperfection-sensitivity of semi-symmetric branching, Proc. Roy. Soc. London Ser. A 357 (1977), no. 1689, 193–211. MR 0478963 (57 #18419)
  • 31. Gérard Iooss, Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’evolution du type Navier-Stokes, Arch. Rational Mech. Anal. 47 (1972), 301–329 (French). MR 0346350 (49 #11075)
  • 32. G. Iooss, Bifurcation of maps and applications, North-Holland Mathematics Studies, vol. 36, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 531030 (81b:58014)
  • 33. G. Iooss and D. D. Joseph, Bifurcation and stability of 𝑛𝑇-periodic solutions branching from 𝑇-periodic solutions at points of resonance, Arch. Rational. Mech. Anal. 66 (1977), no. 2, 135–172. MR 0501154 (58 #18582)
  • 34. G. Iooss and D. D. Joseph, The behaviour of solutions lying on an invariant 2-torus arising from the bifurcation of a periodic solution, Applications of nonlinear analysis in the physical sciences (Bielefeld, 1979), Surveys Reference Works Math., vol. 6, Pitman, Boston, Mass.-London, 1981, pp. 92–114. MR 659692 (84k:58165)
  • 35. V. Iudovic, Stability of steady flows of viscous incompressible fluids, Soviet Physics Dokl. 10 (1965), 293-295.
  • 36. V. I. Iudovich, Secondary flows and fluid instability between rotating cylinders, J. Appl. Math. Mech. 30 (1966), 822–833. MR 0221816 (36 #4868)
  • 37. V. Iudovic, On the stability of self-oscillations of a liquid, Soviet Math. Dokl. 11 (1970), 1543-1546.
  • 38. V. I. Iudovich, The onset of auto-oscillations in a fluid, Prikl. Mat. Meh. 35 (1971), 638–655 (Russian); English transl., J. Appl. Math. Mech. 35 (1971), 587–603 (1972). MR 0381502 (52 #2395)
  • 39. Marko V. Jarić and Joseph L. Birman, New algorithms for the Molien function, J. Mathematical Phys. 18 (1977), no. 7, 1456–1458. MR 0491924 (58 #11098a)
  • 40. D. Joseph, Remarks about bifurcation and stability of quasi-periodic solutions which bifurcate from periodic solutions of the Navier-Stokes equations, Nonlinear Problems in the Physical Sciences and Biology, Lecture Notes in Math., vol. 322, Springer-Verlag, Berlin and New York, 1973.
  • 41. Daniel D. Joseph, Stability of fluid motions. I, Springer-Verlag, Berlin-New York, 1976. Springer Tracts in Natural Philosophy, Vol. 27. MR 0449147 (56 #7452)
  • 42. D. D. Joseph and D. H. Sattinger, Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal. 45 (1972), 79–109. MR 0387844 (52 #8682)
  • 43. Hansjörg Kielhöfer, Stability and semilinear evolution equations in Hilbert space, Arch. Rational Mech. Anal. 57 (1975), 150–165. MR 0442405 (56 #787)
  • 44. James P. Keener and Herbert B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal. 50 (1973), 159–175. MR 0336479 (49 #1253)
  • 45. James P. Keener, Perturbed bifurcation theory at multiple eigenvalues, Arch. Rational Mech. Anal. 56 (1974/75), 348–366. MR 0355710 (50 #8184)
  • 46. Klaus Kirchgässner and Hansjörg Kielhöfer, Stability and bifurcation in fluid dynamics, Rocky Mountain J. Math. 3 (1973), 275–318. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971). MR 0319457 (47 #8001)
  • 47. K. Kirchgässner and P. Sorger, Branching analysis for the Taylor problem, Quart. J. Mech. Appl. Math. 22 (1969), 183–209. MR 0250555 (40 #3789)
  • 48. J. G. Kirkwood and E. Monroe, Statistical mechanics of fusion, J. Chem. Phys. 9 (1941), 514-526.
  • 49. E. L. Koschmieder, Benard convection, Advances in Chem. Phys. 26 (1974), p. 177.
  • 50. John J. Kozak, Phase transitions as a problem in bifurcation theory, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 417–432. MR 556847 (81a:82023)
  • 51. L. Landau, On the problem of turbulence, C. R. (Doklady) Acad. Sci. URSS (N.S.) 44 (1944), 311–314. MR 0011997 (6,246c)
  • 52. O. E. Lanford, Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Tokens, Lecture Notes in Math., vol. 322, Springer-Verlag, Berlin and New York, 1973.
  • 53. R. Larter and P. Ortoleva, Self-electophoretic phenomena, J. Theoret. Biol, (to appear).
  • 54. Norman Levinson, A second order differential equation with singular solutions, Ann. of Math. (2) 50 (1949), 127–153. MR 0030079 (10,710b)
  • 55. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
  • 56. G. Ya. Lyubarskiĭ, The application of group theory in physics, Translated from the Russian by Stevan Dedijer, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0116926 (22 #7709)
  • 57. W. V. R. Malkus and G. Veronis, Finite amplitude cellular convection, J. Fluid Mech. 4 (1958), 225–260. MR 0135012 (24 #B1063)
  • 58. J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale; Applied Mathematical Sciences, Vol. 19. MR 0494309 (58 #13209)
  • 59. Robert M. May, Bifurcations and dynamic complexity in ecological systems, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 517–529. MR 556854 (81f:92031)
  • 60. J. B. McLeod and D. H. Sattinger, Loss of stability and bifurcation at a double eigenvalue, J. Functional Analysis 14 (1973), 62–84. MR 0353079 (50 #5565)
  • 61. L. Michel, Les brisures spontanées de symétrie en physique, J. Phys. 36 (1975), C7/41-C7/51.
  • 62. Louis Michel and Luigi A. Radicati, The geometry of the octet, Ann. Inst. H. Poincaré Sect. A (N.S.) 18 (1973), 185–214. MR 0325036 (48 #3385)
  • 63. Louis Michel and Luigi A. Radicati, Properties of the breaking of hadronic internal symmetry, Ann. Physics 66 (1971), 758–783. MR 0285208 (44 #2431)
  • 64. Willard Miller Jr., Symmetry groups and their applications, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 50. MR 0338286 (49 #3052)
  • 65. Ju. I. Neĭmark, Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR 129 (1959), 736–739 (Russian). MR 0132256 (24 #A2101)
  • 66. H. G. Othmer, Applications of bifurcation theory in the analysis of spatial and temporal pattern formation, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 64–77. MR 556823 (81i:92003)
  • 67. H. G. Othmer and L. E. Scriven, Nonlinear aspects of dynamic pattern in cellular networks, J. Theoret Biol. 43 (1974), 83-112.
  • 68. Giovanni Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova 32 (1962), 374–397 (Italian). MR 0189354 (32 #6780)
  • 69. P. H. Rabinowitz, Existence and nonuniqueness of rectangular solutions of the Bénard problem, Arch. Rational Mech. Anal. 29 (1968), 32–57. MR 0233557 (38 #1878)
  • 70. Harold J. Raveché and C. A. Stuart, Bifurcation of solutions with crystalline symmetry, J. Mathematical Phys. 17 (1976), no. 11, 1949–1953. MR 0418776 (54 #6812)
  • 71. Paul H. Rabinowitz (ed.), Applications of bifurcation theory, Academic Press [Harcourt Brace Jovanovich, Publishers]\ New York-London, 1977. Publication of the Mathematics Research Center, No. 38. MR 0445957 (56 #4290)
  • 72. P. H. Roberts, Dynamo theory, Mathematical Problems in the Geophysical Sciences, Lectures in Appl. Math. vol. 14, Amer. Math. Soc., Providence, R. I., 1971.
  • 73. Otto E. Rössler, Continuous chaos—four prototype equations, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 376–392. MR 556843 (81h:58042)
  • 74. David Ruelle and Floris Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167–192. MR 0284067 (44 #1297)
  • 75. David Ruelle, The Lorenz attractor and the problem of turbulence, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 146–158. Lecture Notes in Math., Vol. 565. MR 0467839 (57 #7690)
  • 76. R. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, New York University IMM-NYU, 333 (1964).
  • 77. D. Sather, Branching of solutions of nonlinear equations, Rocky Mountain J. Math. 3 (1973), 203–250. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971). MR 0336484 (49 #1258)
  • 78. D. Sather, Branching and stability for nonlinear gradient operators, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, pp. 179–192. MR 0500357 (58 #18015)
  • 79. D. H. Sattinger, The mathematical problem of hydrodynamic stability, J. Math. Mech. 19 (1969/1970), 979–817. MR 0261182 (41 #5798)
  • 80. D. H. Sattinger, Stability of bifurcating solutions by Leray-Schauder degree, Arch. Rational Mech. Anal. 43 (1971), 154–166. MR 0336485 (49 #1259)
  • 81. D. H. Sattinger, Bifurcation of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 41 (1971), 66–80. MR 0272257 (42 #7138)
  • 82. David H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Mathematics, Vol. 309, Springer-Verlag, Berlin-New York, 1973. MR 0463624 (57 #3569)
  • 83. D. H. Sattinger, Group representation theory and branch points of nonlinear functional equations, SIAM J. Math. Anal. 8 (1977), no. 2, 179–201. MR 0438383 (55 #11297)
  • 84. D. H. Sattinger, Group representation theory, bifurcation theory and pattern formation, J. Funct. Anal. 28 (1978), no. 1, 58–101. MR 493378 (82f:58034), http://dx.doi.org/10.1016/0022-1236(78)90080-0
  • 85. D. H. Sattinger, Selection mechanisms for pattern formation, Arch. Rational Mech. Anal. 66 (1977), no. 1, 31–42. MR 0488129 (58 #7696)
  • 86. D. H. Sattinger, Bifurcation from rotationally invariant states, J. Math. Phys. 19 (1978), no. 8, 1720–1732. MR 500398 (80j:58027), http://dx.doi.org/10.1063/1.523871
  • 87. David H. Sattinger, Group-theoretic methods in bifurcation theory, Lecture Notes in Mathematics, vol. 762, Springer, Berlin, 1979. With an appendix entitled “How to find the symmetry group of a differential equation” by Peter Olver. MR 551626 (81e:58022)
  • 88. R. A. Schmitz, G. T. Renola and P. C. Garrigan, Observations of complex dynamic behavior in the H, Ann. New York Acad. Sci. 316 (1979), 638-651.
  • 89. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 0228014 (37 #3598), http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
  • 90. J. T. Stuart, On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. I. The basic behaviour in plane Poiseuille flow, J. Fluid Mech. 9 (1960), 353–370. MR 0128228 (23 #B1272)
  • 91. G. I. Taylor, Stability of a viscous fluid contained between two rotating cylinders, Philos. Trans. Roy. Soc. Ser. A 223 (1923), 284-343.
  • 92. E. E. Tareva, On a microscopic approach to the theory of polymorphic phase transitions, Physics Letters 49 A (1974), 309-310.
  • 93. E. E. Tareva and T. I. Trapezina, The bifurcation approach to the theory of the first order isotropic-nematic phase transition, Physics Letters 60 A (1977), 217-218.
  • 94. J. M. T. Thompson, Bifurcational aspects of catastrophe theory, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 553–571. MR 556858 (81h:58021)
  • 95. B. V. Loginov and V. A. Trenogin, The use of group properties for the determination of multiparameter families of solutions of nonlinear equations, Mat. Sb. (N.S.) 85 (127) (1971), 440–454 (Russian). MR 0283642 (44 #872)
  • 96. A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Royal Soc. London Ser. B 237 (1952), 37-72.
  • 97. M. M. Vaĭnberg and V. A. Trenogin, The Ljapunov and Schmidt methods in the theory of non-linear equations and their subsequent development, Uspehi Mat. Nauk 17 (1962), no. 2 (104), 13–75 (Russian). MR 0154113 (27 #4071)
  • 98. M. M. Vainberg and V. A. Trenogin, Theory of branching of solutions of nonlinear equations, Noordhoff, Leyden, 1974.
  • 99. W. Velte, Stabilitätsverhalten und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen, Arch. Rational Mech. Anal. 16 (1964), 97–125 (German). MR 0182240 (31 #6463)
  • 100. H. F. Weinberger, On the stability of bifurcating solutions, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, pp. 219–233. MR 0508719 (58 #22902)
  • 101. John D. Weeks, Stuart A. Rice, and John J. Kozak, Analytic approach to the theory of phase transitions, J. Chem. Phys. 52 (1970), 2416–2426. MR 0266559 (42 #1462)
  • 102. Eugene P. Wigner, Group theory: And its application to the quantum mechanics of atomic spectra, Expanded and improved ed. Translated from the German by J. J. Griffin. Pure and Applied Physics. Vol. 5, Academic Press, New York-London, 1959. MR 0106711 (21 #5442)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 35B32, 35B35, 20C99, 76E15

Retrieve articles in all journals with MSC (1980): 35B32, 35B35, 20C99, 76E15


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1980-14823-5
PII: S 0273-0979(1980)14823-5