Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: J. M. van Wouwe
Title: $GO$-spaces and generalizations of metrizability
Additional book information: Mathematical Centre Tracts, Volume 104, Mathematisch Centrum, Amsterdam, The Netherlands, 1979, x + 117 pp.

References [Enhancements On Off] (What's this?)

  • [A] A. Arhangel'skiĭ, On a class of spaces containing all metric and all locally compact spaces, Soviet Math. Dokl. 4 (1963), 1051-1055.
  • [A1] K. Alster, Subparacompactness in cartesian products of generalized ordered spaces, Fund. Math. 87 (1975), 7-28. MR 451210
  • [Ba] B. J. Ball, Countable paracompactness in linearly ordered spaces, Proc. Amer. Math. Soc. 5 (1954), 190-192. MR 62419
  • [Be] H. R. Bennett, Point-countability in ordered spaces, Proc. Amer. Math. Soc. 28 (1971), 598-606. MR 275377
  • H. R. Bennett and D. J. Lutzer, Certain hereditary properties and metrizability in generalized ordered spaces, Fund. Math. 107 (1980), no. 1, 71–84. MR 584660, https://doi.org/10.4064/fm-107-1-71-84
  • [Bi] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. no. 25, New York, 1940.
  • [Bo] C. J. R. Borges, On metrizability of topological spaces, Canad. J. Math. 20 (1968), 795-804. MR 231355
  • [vDW] J. van Dalen and E. Wattell, A topological characterization of ordered spaces, General Topology and Appl. 3 (1973), 347-354. MR 341431
  • [E] S. Eilenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), 39-45. MR 3201
  • [Fa] M. J. Faber, Metrizability in generalized ordered spaces, Math. Center Tracts, no. 53, Amsterdam, 1974. MR 418053
  • [Fi] V. Filippov, On feathered paracompacta, Soviet Math. Dokl. 9 (1968), 161-164.
  • [GJ] L. Gillman and M. Jerison, Rings of continuous functions, van Nostrand, New York, 1960. MR 116199
  • [H] H. Herrlich, Ornungsfahigkeit topologischer Raume, Inaugural dissertation, Berlin, 1962. MR 154246
  • [HL] R. W. Heath and D. J. Lutzer, Dugundji extension theorems for linearly ordered spaces. Pacific J. Math. 55 (1974), 419-425. MR 370477
  • [HLZ] R. W. Heath, D. J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973), 481-493. MR 372826
  • [L] D. J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc. 22 (1969), 557-558. MR 248761
  • [Mi1] E. A. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 152985
  • [Mi2] E. A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199-214. MR 287502
  • [Mc] A. Miscenko, Spaces with a pointwise denumerable basis, Soviet Math. Dokl. 3 (1962), 855-858. MR 138090
  • [Mo] K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382. MR 165491
  • [Na] K. Nagami, ∑-spaces, Fund. Math. 65 (1969), 169-192. MR 257963
  • [Ny] P. Nyikos, A compact, nonmetrizable space P such that P (preprint).
  • [O] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daiyaku, Sect A 9 (1967), 236-254. MR 230283
  • [P] T. Przymusiński, A Lindelöf space X such that X, Fund. Math. 78 (1973), 291-296. MR 321007
  • [R1] M. E. Rudin, Interval topology in subsets of totally orderable spaces, Trans. Amer. Math. Soc. 118 (1965), 376-389. MR 179751
  • [R2] M. E. Rudin, Souslin's conjecture, Amer. Math. Monthly 76 (1969), 1113-1119. MR 270322
  • [S] R. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632. MR 20770
  • [V] N. V. Veličko, Ordered p-spaces, Izv. Vysš. Učebn Zaved. Matematika 1976, no. 9 (172), 25-36. MR 487400

Review Information:

Reviewer: David J. Lutzer
Journal: Bull. Amer. Math. Soc. 3 (1980), 886-891
DOI: https://doi.org/10.1090/S0273-0979-1980-14841-7
American Mathematical Society