Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Absence of singular continuous spectrum in $N$-body quantum systems


Authors: P. Perry, I. M. Sigal and B. Simon
Journal: Bull. Amer. Math. Soc. 3 (1980), 1019-1023
MSC (1970): Primary 81A81; Secondary 35P05
DOI: https://doi.org/10.1090/S0273-0979-1980-14838-7
MathSciNet review: 585181
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Balslev and J. M. Combes, Spectral properties of Schrödinger Hamiltonians with dilation analytic potentials, Comm. Math. Phys. 22 (1971), 280-294. MR 345552
  • 2. M. Combescure and J. Ginibre, On the negative point spectrum of quantum mechanical three-body systems, Ann. Phys. 101 (1976), 355-379. MR 438951
  • 3. L. D. Faddeev, Mathematical aspects of the three body problem in the quantum theory of scattering, Israel Program for Scientific Translation, Jerusalem, 1965. MR 221828
  • 4. G. A. Hagedorn, Asymptotic completeness for a class of four particle Schrödinger operators, Bull. Amer. Math. Soc. 84 (1978), 155-156; Asymptotic completeness for classes of two, three, and four particle Schrödinger operators, Trans. Amer. Math. Soc. 258 (1980), 1-75. MR 496030
  • 5. R. J. Iorio and M. O'Carrol, Asymptotic completeness for multiparticle Schrödinger operators with weak potentials, Comm. Math. Phys. 27 (1972), 137-149. MR 314392
  • 6. R. Lavine, Commutators and scattering theory, I. Repulsive interactions, Comm. Math. Phys. 20 (1971), 301-323; Completeness of the wave operators in the repulsive N-body problem, J. Math. Phys. 14 (1973), 376-379. MR 293945
  • 7. M. Loss and I. M. Sigal, Many body scattering with quasibound states (in preparation).
  • 8. E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), no. 3, 391–408. MR 603501
  • 9. P. A. Perry, I. M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators (in preparation).
  • 10. Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • 11. M. Reed and B. Simon, Methods of modem mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978. MR 493421
  • 12. I. M. Sigal, Mathematical foundations of quantum scattering theory for multiparticle systems, Mem. Amer. Math. Soc. 16 (1978), no. 209, iii+147. MR 508478, https://doi.org/10.1090/memo/0209
  • 13. I. M. Sigal, On quantum mechanics of many-body systems with dilation-analytic potentials, Bull. Amer. Math. Soc. 84 (1978), 152-154; Scattering theory for multiparticle systems. I, II, (preprint) ETH-Zürich, 1977-1978 (an expanded version will appear in the Springer Lecture Notes in Mathematics). MR 459410
  • 14. B. Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), 259-274. MR 496073
  • 15. D. R. Yafaev, On the point spectrum in the quantum-mechanical many-body problem, Math. USSR Izv. 10 (1976), 861-896.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 81A81, 35P05

Retrieve articles in all journals with MSC (1970): 81A81, 35P05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1980-14838-7

American Mathematical Society